Augmented Lagrangian and Tchebycheff Approaches in Multiple Objective Programming

Relationships between the Tchebycheff scalarization and the augmented Lagrange multiplier technique are examined in the framework of general multiple objective programs (MOPs). It is shown that under certain conditions the Tchebycheff method can be represented as a quadratic weighted-sums scalarization of the MOP, that is, given weight values in the former, the coefficients of the latter can be found so that the same efficient point is selected. Analysis for concave and linear MOPs is included. Resulting applications in multiple criteria decision making are also discussed.

[1]  Hanif D. Sherali,et al.  Linear programming and network flows (2nd ed.) , 1990 .

[2]  Laurence A. Wolsey,et al.  An elementary survey of general duality theory in mathematical programming , 1981, Math. Program..

[3]  David K. Smith,et al.  Mathematical Programming: Theory and Algorithms , 1986 .

[4]  Eng Ung Choo,et al.  An interactive algorithm for multicriteria programming , 1980, Comput. Oper. Res..

[5]  C. Singh,et al.  Duality in nonlinear multiobjective programming using augmented Lagrangian functions , 1996 .

[6]  P. Yu A Class of Solutions for Group Decision Problems , 1973 .

[7]  Hanif D. Sherali,et al.  Linear Programming and Network Flows , 1977 .

[8]  J. G. Ecker,et al.  Selecting Subsets from the Set of Nondominated Vectors in Multiple Objective Linear Programming , 1981 .

[9]  F. J. Gould Extensions of Lagrange Multipliers in Nonlinear Programming , 1969 .

[10]  Carlos Romero,et al.  A theorem connecting utility function optimization and compromise programming , 1991, Oper. Res. Lett..

[11]  Matthew L. Tenhuisen,et al.  Efficiency and Solution Approaches to Bicriteria Nonconvex Programs , 1997, J. Glob. Optim..

[12]  Harvey J. Everett Generalized Lagrange Multiplier Method for Solving Problems of Optimum Allocation of Resources , 1963 .

[13]  V. Bowman On the Relationship of the Tchebycheff Norm and the Efficient Frontier of Multiple-Criteria Objectives , 1976 .

[14]  Mokhtar S. Bazaraa,et al.  Nonlinear Programming: Theory and Algorithms , 1993 .

[15]  R. S. Laundy,et al.  Multiple Criteria Optimisation: Theory, Computation and Application , 1989 .

[16]  Matthew L. Tenhuisen,et al.  Vector optimization and generalized Lagrangian duality , 1994, Ann. Oper. Res..

[17]  Andrzej P. Wierzbicki,et al.  The Use of Reference Objectives in Multiobjective Optimization , 1979 .

[18]  R. Rockafellar Augmented Lagrange Multiplier Functions and Duality in Nonconvex Programming , 1974 .

[19]  A. M. Geoffrion Proper efficiency and the theory of vector maximization , 1968 .

[20]  Ralph E. Steuer,et al.  An interactive weighted Tchebycheff procedure for multiple objective programming , 1983, Math. Program..

[21]  Ignacy Kaliszewski,et al.  A modified weighted tchebycheff metric for multiple objective programming , 1987, Comput. Oper. Res..

[22]  Malgorzata M. Wiecek,et al.  An Augmented Lagrangian Scalarization for Multiple Objective Programming , 1997 .

[23]  Manuel A. Morón,et al.  Generating well-behaved utility functions for compromise programming , 1996 .

[24]  Y. Sawaragi,et al.  A generalized Lagrangian function and multiplier method , 1975 .