Comparative Study of Hybrid Artificial Intelligence Approaches for Predicting Hangingwall Stability

AbstractFive hybrid artificial intelligence (AI) approaches based on machine learning (ML) and metaheuristic algorithms were proposed to predict open stope hangingwall (HW) stability. The ML algori...

[1]  Max Kuhn,et al.  Applied Predictive Modeling , 2013 .

[2]  Hideki Shimada,et al.  Influence of Stope Design on Stability of Hanging Wall Decline in Cibaliung Underground Gold Mine , 2013 .

[3]  Nhat-Duc Hoang,et al.  Predicting Compressive Strength of High-Performance Concrete Using Metaheuristic-Optimized Least Squares Support Vector Regression , 2016, J. Comput. Civ. Eng..

[4]  R. Trueman,et al.  The extended Mathews stability graph: Quantifying case history requirements and site-specific effects , 2001 .

[5]  Mikhail Kanevski,et al.  Machine Learning Algorithms for GeoSpatial Data. Applications and Software Tools , 2008 .

[6]  Dan D. Koo,et al.  A Comparison Study of Water Pipe Failure Prediction Models Using Weibull Distribution and Binary Logistic Regression , 2015 .

[7]  Maja Pohar Perme,et al.  Comparison of logistic regression and linear discriminant analysis , 2004, Advances in Methodology and Statistics.

[8]  Fabrice Emeriault,et al.  Artificial neural network application for the prediction of ground surface movements induced by shield tunnelling , 2010 .

[9]  Ron Kohavi,et al.  A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection , 1995, IJCAI.

[10]  W. Youden,et al.  Index for rating diagnostic tests , 1950, Cancer.

[11]  Hani S. Mitri,et al.  Numerical modelling of ore dilution in blasthole stoping , 2007 .

[12]  Xin-She Yang,et al.  Nature-Inspired Metaheuristic Algorithms , 2008 .

[13]  M. Stone Cross‐Validatory Choice and Assessment of Statistical Predictions , 1976 .

[14]  Qian Chen,et al.  Comparison of Data Mining Techniques for Predicting Compressive Strength of Environmentally Friendly Concrete , 2016, J. Comput. Civ. Eng..

[15]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[16]  Sheng Yao Lai,et al.  Logistic Regression Model for Evaluating Soil Liquefaction Probability Using CPT Data , 2006 .

[17]  Michael Y. Hu,et al.  Artificial neural networks in bankruptcy prediction: General framework and cross-validation analysis , 1999, Eur. J. Oper. Res..

[18]  Richard A. Berk Classification and Regression Trees (CART) , 2008 .

[19]  Mo Yuan-bin,et al.  Optimal Choice of Parameters for Firefly Algorithm , 2013, 2013 Fourth International Conference on Digital Manufacturing & Automation.

[20]  Olivier Jourdan,et al.  Mesoscale cloud pattern classification over ocean with a neural network using a new index of cloud variability , 2006 .

[21]  Lyndon Michael Clark Minimizing dilution in open stope mining with a focus on stope design and narrow vein longhole blasting , 1998 .

[22]  Christian Igel,et al.  Evolutionary tuning of multiple SVM parameters , 2005, ESANN.

[23]  Jui-Sheng Chou,et al.  Shear Strength Prediction in Reinforced Concrete Deep Beams Using Nature-Inspired Metaheuristic Support Vector Regression , 2016, J. Comput. Civ. Eng..

[24]  Jasper Snoek,et al.  Practical Bayesian Optimization of Machine Learning Algorithms , 2012, NIPS.

[25]  Senjian An,et al.  Fast cross-validation algorithms for least squares support vector machine and kernel ridge regression , 2007, Pattern Recognit..

[26]  Rolf T. Wigand,et al.  Community Detection in Complex Networks: Multi-objective Enhanced Firefly Algorithm , 2013, Knowl. Based Syst..

[27]  Philip S. Yu,et al.  Top 10 algorithms in data mining , 2007, Knowledge and Information Systems.

[28]  Nabil Kartam,et al.  Modeling and Predicting Biological Performance of Contact Stabilization Process Using Artificial Neural Networks , 2004 .

[29]  Amr Kandil,et al.  Factors Affecting Litigation Outcomes of Differing Site Conditions (DSC) Disputes: A Logistic Regression Models (LRM) , 2009 .

[30]  P. Samui Slope stability analysis: a support vector machine approach , 2008 .

[31]  Devendra Singh,et al.  Artificial neural network (ANN) models for determining hydraulic conductivity of compacted fine-grained soils , 2009 .

[32]  J. Friedman Greedy function approximation: A gradient boosting machine. , 2001 .

[33]  Mark S. Diederichs,et al.  Tensile strength and abutment relaxation as failure control mechanisms in underground excavations , 1999 .

[34]  David W. Hosmer,et al.  Applied Logistic Regression , 1991 .

[35]  Geoffrey William Capes,et al.  Open stope hangingwall design based on general and detailed data collection in unfavourable hangingwall conditions , 2009 .

[36]  Hyongdoo Jang,et al.  Unplanned dilution and ore-loss optimisation in underground mines via cooperative neuro-fuzzy network , 2014 .

[37]  Janez Brest,et al.  A comprehensive review of firefly algorithms , 2013, Swarm Evol. Comput..

[38]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[39]  Mustapha T. Jimoh,et al.  Geochemical stream reconnaissance survey of the schist belt around Igbo-Ora, Southwestern Nigeria , 2015 .

[40]  M. Reeves,et al.  Numerical evaluation of the effects of stress and excavation surface geometry on the zone of relaxation around open stope hanging walls , 2007 .

[41]  Andy Fourie,et al.  Neural network and particle swarm optimization for predicting the unconfined compressive strength of cemented paste backfill , 2018 .

[42]  J. Friedman Stochastic gradient boosting , 2002 .

[43]  R. Trueman,et al.  Applying the Extended Mathews stability graph to stress relaxation, site specific effects and narrow vein stoping , 2003 .

[44]  R. Trueman,et al.  Extending the Mathews stability graph for open–stope design , 2001 .