Fractional Kirchhoff equation with a general critical nonlinearity

Abstract In this paper, for any dimension N > 2 s ( 0 s 1 ) , we study the fractional Kirchhoff equation a + b ∫ R N | ( − Δ ) s 2 u | 2 d x ( − Δ ) s u + u = f ( u ) in R N , with a critical nonlinearity, where ( − Δ ) s is the fractional Laplacian. By using a perturbation approach, we prove the existence of solutions to the above problem without the Ambrosetti–Rabinowitz condition when the parameter b is small. Moreover, we obtain the asymptotic behavior of solutions as b → 0 . The method we use and the result we get are applicable in any dimension N > 2 s . Our result improves the study made in the low dimension 2 s N 4 s .

[1]  E. Valdinoci,et al.  Hitchhiker's guide to the fractional Sobolev spaces , 2011, 1104.4345.

[2]  A. Cotsiolis,et al.  Best constants for Sobolev inequalities for higher order fractional derivatives , 2004 .

[3]  N. Laskin Fractional quantum mechanics and Lévy path integrals , 1999, hep-ph/9910419.

[4]  David Applebaum Levy processes - from probability theory to finance and quantum groups , 2004 .

[5]  Xiaoming He,et al.  Existence and concentration behavior of positive solutions for a Kirchhoff equation in R3 , 2012 .

[6]  Enrico Valdinoci,et al.  Fractional Laplacian phase transitions and boundary reactions: A geometric inequality and a symmetry result , 2008, 0801.2355.

[7]  C. Brändle,et al.  A concave—convex elliptic problem involving the fractional Laplacian , 2010, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[8]  Enrico Valdinoci,et al.  A critical Kirchhoff type problem involving a nonlocal operator , 2013 .

[9]  Giuseppina Autuori,et al.  Elliptic problems involving the fractional Laplacian in RN , 2013 .

[10]  Giuseppina Autuori,et al.  Stationary Kirchhoff problems involving a fractional elliptic operator and a critical nonlinearity , 2014, 1410.6762.

[11]  N. Nyamoradi Existence of three solutions for Kirchhoff nonlocal operators of elliptic type , 2013 .

[12]  V. Ambrosio,et al.  A multiplicity result for a fractional Kirchhoff equation in ℝN with a general nonlinearity , 2016, Communications in Contemporary Mathematics.

[13]  M. Squassina,et al.  Fractional Schrödinger–Poisson Systems with a General Subcritical or Critical Nonlinearity , 2015, 1503.08765.

[14]  Xiaojun Chang,et al.  Ground state of scalar field equations involving a fractional Laplacian with general nonlinearity , 2013 .

[15]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[16]  Marco Squassina,et al.  Ground states for fractional Kirchhoff equations with critical nonlinearity in low dimension , 2016, 1612.07914.

[17]  Shuangjie Peng,et al.  Existence and asymptotic behavior of nodal solutions for the Kirchhoff-type problems in R3 , 2015 .

[18]  Pierre-Louis Lions,et al.  Symétrie et compacité dans les espaces de Sobolev , 1982 .

[19]  M. Squassina,et al.  Schrodinger-Poisson systems with a general critical nonlinearity , 2015, 1501.01110.

[20]  A fractional Kirchhoff-type problem in ℝN without the (AR) condition , 2016 .

[21]  C. O. Alves,et al.  Existence of a ground state solution for a nonlinear scalar field equation with critical growth , 2012 .

[22]  Patrizia Pucci,et al.  Critical stationary Kirchhoff equations in RN involving nonlocal operators , 2016 .