Surface symmetry-breaking and strain effects on orbital occupancy in transition metal perovskite epitaxial films

The electron occupancy of 3d-orbitals determines the properties of transition metal oxides. This can be achieved, for example, through thin-film heterostructure engineering of ABO(3) oxides, enabling emerging properties at interfaces. Interestingly, epitaxial strain may break the degeneracy of 3d-e(g) and t(2g) orbitals, thus favoring a particular orbital filling with consequences for functional properties. Here we disclose the effects of symmetry breaking at free surfaces of ABO(3) perovskite epitaxial films and show that it can be combined with substrate-induced epitaxial strain to tailor at will the electron occupancy of in-plane and out-of-plane surface electronic orbitals. We use X-ray linear dichroism to monitor the relative contributions of surface, strain and atomic terminations to the occupancy of 3z(2)-r(2) and x(2)-y(2) orbitals in La(2/3)Sr(1/3)MnO(3) films. These findings open the possibility of an active tuning of surface electronic and magnetic properties as well as chemical properties (catalytic reactivity, wettability and so on).

[1]  John B. Goodenough,et al.  Magnetism and the chemical bond , 1963 .

[2]  Terakura,et al.  Phase diagram of tetragonal manganites , 2000, Physical review letters.

[3]  J. Lahann,et al.  A Reversibly Switching Surface , 2003, Science.

[4]  Akira Ohtomo,et al.  A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface , 2004, Nature.

[5]  N. D. Mathur,et al.  Ferroelectric Control of Spin Polarization , 2010, Science.

[6]  C. Kao,et al.  Hidden magnetic configuration in epitaxial La(1-x) Sr(x) MnO3 films. , 2010, Physical review letters.

[7]  A. Bostwick,et al.  Preferential occupation of interface bands in La 2/3 Sr 1/3 MnO 3 films as seen via angle-resolved photoemission , 2010 .

[8]  C. Kao Hidden magnetic configuration in epitaxial La1-rSrzMnO3 films , 2010 .

[9]  N. S. Gajbhiye,et al.  Electronic and magnetic properties of Fe3Mo3N , 1997 .

[10]  Y. Tokura,et al.  Orbital physics in transition-metal oxides , 2000, Science.

[11]  Mfi Statics and Dynamics , 2014 .

[12]  Eberhard Goering,et al.  Orbital reflectometry of oxide heterostructures. , 2010, Nature materials.

[13]  J. Fontcuberta,et al.  Atomically flat SrO-terminated SrTiO3(001) substrate , 2009 .

[14]  J. Goodenough,et al.  A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles , 2011, Science.

[15]  M. Bibes,et al.  Charge trapping in optimally doped epitaxial manganite thin films , 2002 .

[16]  N. Brookes,et al.  Strain induced x-ray absorption linear dichroism in La0.7Sr0.3MnO3 thin films , 2006 .

[17]  F. D. de Groot,et al.  The CTM4XAS program for EELS and XAS spectral shape analysis of transition metal L edges. , 2010, Micron.

[18]  Evidence of orbital reconstruction at interfaces in ultrathin La0.67Sr0.33MnO3 films. , 2007, Physical review letters.

[19]  B. Gilbert,et al.  The probing depth of total electron yield in the sub-keV range: TEY-XAS and X-PEEM , 2003 .

[20]  M. Bibes,et al.  Nanoscale Multiphase Separation at La , 2001 .

[21]  Electronic and magnetic properties of the (001) surface of hole-doped manganites , 2004, cond-mat/0407558.

[22]  Horst Rogalla,et al.  Quasi-ideal strontium titanate crystal surfaces through formation of strontium hydroxide , 1998 .

[23]  Thickness-dependent magnetotransport in ultrathin manganite films , 1998, cond-mat/9809414.

[24]  F. Guinea,et al.  Surface electronic structure and magnetic properties of doped manganites , 1998, cond-mat/9811337.

[25]  A. Tulapurkar,et al.  Large voltage-induced magnetic anisotropy change in a few atomic layers of iron. , 2009, Nature nanotechnology.

[26]  N. Reyren,et al.  Superconducting Interfaces Between Insulating Oxides , 2007, Science.

[27]  S. Herminghaus,et al.  Wetting: Statics and dynamics , 1997 .

[28]  H. Hwang,et al.  BASIC NOTIONS , 2022 .

[29]  J. Goodenough,et al.  Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries. , 2011, Nature chemistry.

[30]  P. Gennes Wetting: statics and dynamics , 1985 .

[31]  J. L. Meriam Statics and dynamics , 1966 .