Locally-Constrained Region-Based Methods for DW-MRI Segmentation

In this paper, we describe a method for segmenting fiber bundles from diffusion-weighted magnetic resonance images using a locally-constrained region based approach. From a pre-computed optimal path, the algorithm propagates outward capturing only those voxels which are locally connected to the fiber bundle. Rather than attempting to find large numbers of open curves or single fibers, which individually have questionable meaning, this method segments the full fiber bundle region. The strengths of this approach include its ease-of-use, computational speed, and applicability to a wide range of fiber bundles. In this work, we show results for segmenting the cingulum bundle. Finally, we explain how this approach and extensions thereto overcome a major problem that typical region-based flows experience when attempting to segment neural fiber bundles.

[1]  Tony F. Chan,et al.  Active contours without edges , 2001, IEEE Trans. Image Process..

[2]  P. Basser,et al.  In vivo fiber tractography using DT‐MRI data , 2000, Magnetic resonance in medicine.

[3]  Yogesh Rathi,et al.  SEEING THE UNSEEN: SEGMENTING WITH DISTRIBUTIONS , 2006 .

[4]  J. V. Martin,et al.  2,4,5–T , 1979, The Lancet.

[5]  Susumu Mori,et al.  Fiber tracking: principles and strategies – a technical review , 2002, NMR in biomedicine.

[6]  Gareth J. Barker,et al.  Estimating distributed anatomical connectivity using fast marching methods and diffusion tensor imaging , 2002, IEEE Transactions on Medical Imaging.

[7]  Zhiguo Sun,et al.  Anterior cingulum abnormalities in male patients with schizophrenia determined through diffusion tensor imaging. , 2004, The American journal of psychiatry.

[8]  Eric Pichon,et al.  Novel Methods for Multidimensional Image Segmentation , 2005 .

[9]  Lauren J. O'Donnell,et al.  Cerebral white matter analysis using diffusion imaging , 2006 .

[10]  Carl-Fredrik Westin,et al.  New Approaches to Estimation of White Matter Connectivity in Diffusion Tensor MRI: Elliptic PDEs and Geodesics in a Tensor-Warped Space , 2002, MICCAI.

[11]  Marc Niethammer,et al.  Finsler Tractography for White Matter Connectivity Analysis of the Cingulum Bundle , 2007, MICCAI.

[12]  Xavier Bresson,et al.  A level set method for segmentation of the thalamus and its nuclei in DT-MRI , 2007, Signal Process..

[13]  Xavier Bresson,et al.  White matter fiber tract segmentation in DT-MRI using geometric flows , 2005, Medical Image Anal..

[14]  Rachid Deriche,et al.  Control Theory and Fast Marching Techniques for Brain Connectivity Mapping , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[15]  Rachid Deriche,et al.  A Riemannian Approach to Diffusion Tensor Images Segmentation , 2005, IPMI.

[16]  P. V. van Zijl,et al.  Three‐dimensional tracking of axonal projections in the brain by magnetic resonance imaging , 1999, Annals of neurology.

[17]  Lawrence H. Staib,et al.  White matter tractography by anisotropic wavefront evolution and diffusion tensor imaging , 2005, Medical Image Anal..

[18]  Geoffrey J M Parker,et al.  A framework for a streamline‐based probabilistic index of connectivity (PICo) using a structural interpretation of MRI diffusion measurements , 2003, Journal of magnetic resonance imaging : JMRI.

[19]  Rachid Deriche,et al.  DTI segmentation by statistical surface evolution , 2006, IEEE Transactions on Medical Imaging.

[20]  S. Osher,et al.  Lax-Friedrichs sweeping scheme for static Hamilton-Jacobi equations , 2004 .

[21]  Ruzena Bajcsy,et al.  Similarity Measures for Matching Diffusion Tensor Images , 1999, BMVC.

[22]  M. Raichle,et al.  Tracking neuronal fiber pathways in the living human brain. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Stanley Osher,et al.  Fast Sweeping Methods for Static Hamilton-Jacobi Equations , 2004, SIAM J. Numer. Anal..

[24]  Anna Vilanova,et al.  Evaluation of fiber clustering methods for diffusion tensor imaging , 2005, VIS 05. IEEE Visualization, 2005..

[25]  Ross T. Whitaker,et al.  A Volumetric Approach to Quantifying Region-to-Region White Matter Connectivity in Diffusion Tensor MRI , 2007, IPMI.

[26]  G. Pearlson,et al.  Diffusion Tensor Imaging and Axonal Tracking in the Human Brainstem , 2001, NeuroImage.

[27]  R. Kikinis,et al.  Cingulate fasciculus integrity disruption in schizophrenia: a magnetic resonance diffusion tensor imaging study , 2003, Biological Psychiatry.

[28]  Rachid Deriche,et al.  Level Set and Region Based Surface Propagation for Diffusion Tensor MRI Segmentation , 2004, ECCV Workshops CVAMIA and MMBIA.

[29]  Sigurd B. Angenent,et al.  Finsler Active Contours , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  David Mumford,et al.  Bayesian Rationale for the Variational Formulation , 1994, Geometry-Driven Diffusion in Computer Vision.

[31]  Carl-Fredrik Westin,et al.  A Hamilton-Jacobi-Bellman Approach to High Angular Resolution Diffusion Tractography , 2005, MICCAI.

[32]  Carl-Fredrik Westin,et al.  A Bayesian approach for stochastic white matter tractography , 2006, IEEE Transactions on Medical Imaging.

[33]  D. Pandya,et al.  Fiber Pathways of the Brain , 2006 .

[34]  Jean-Francois Mangin,et al.  Fiber Tracking in q-Ball Fields Using Regularized Particle Trajectories , 2005, IPMI.

[35]  P. Basser,et al.  Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. , 1996, Journal of magnetic resonance. Series B.