Can high-redshift Hubble diagrams rule out the standard model of cosmology in the context of cosmography?

Using mock data for the Hubble diagrams of type Ia supernovae (SNIa) and quasars (QSOs) generated based on the standard model of cosmology, and using the least-squares method based on the Markov-Chain-Monte-Carlo (MCMC) algorithm, we first put constraints on the cosmographic parameters in the context of the various model-independent cosmographic methods reconstructed from the Taylor 4 th and 5 th order expansions and the Pade (2,2) and (3,2) polynomials of the Hubble parameter, respectively. We then reconstruct the distance modulus in the framework of cosmographic methods and calculate the percentage difference between the distance modulus of the cosmographic methods and that of the standard model. The percentage difference is minimized when the Pade approximation is used which means that the Pade cosmographic method is sufficiently suitable for reconstructing the distance modulus even at high-redshifts. In the next step, using the real observational data for the Hubble diagrams of SNIa, QSOs, gamma-ray-bursts (GRBs), and observations from baryon acoustic oscillations (BAO) in two sets of the low-redshift combination (SNIa+QSOs+GRBs+BAO) embracing the redshift range of 0 . 01 < z < 2 . 26 and the high-redshift combination (SNIa+QSOs+GRBs) which covers a redshift range of 0 . 01 < z < 5 . 5, we put observational constraints on the cosmographic parameters of the Pade cosmography and also the standard model. Our analysis indicates that Pade cosmographic approaches do not reveal any cosmographic tension between the standard model and the observational data. We also confirm this result, using the statistical AIC criteria. Finally, we put the cosmographic method in the redshift-bin data and find a larger value of Ω m 0 extracted from s 0 parameter compared with those of the q 0 parameter and Planck-ΛCDM values.

[1]  S. Shankaranarayanan,et al.  Modified theories of gravity: Why, how and what? , 2022, General Relativity and Gravitation.

[2]  Ryan E. Keeley,et al.  Cosmology Intertwined: A Review of the Particle Physics, Astrophysics, and Cosmology Associated with the Cosmological Tensions and Anomalies , 2022, Journal of High Energy Astrophysics.

[3]  F. Wang,et al.  High-redshift cosmography: Application and comparison with different methods , 2022, Astronomy & Astrophysics.

[4]  M. Hendry,et al.  Neural networks and standard cosmography with newly calibrated high redshift GRB observations , 2021, Journal of Cosmology and Astroparticle Physics.

[5]  A. Mehrabi,et al.  Cosmographic Parameters in Model-independent Approaches , 2021, The Astrophysical Journal.

[6]  M. Malekjani,et al.  A new comparison between holographic dark energy and standard $$\varLambda $$-cosmology in the context of cosmography method , 2021, The European Physical Journal C.

[7]  S. Capozziello,et al.  Model independent reconstruction of cosmological accelerated-decelerated phase , 2021, 2106.15579.

[8]  S. Capozziello,et al.  Cosmography by orthogonalized logarithmic polynomials , 2021, Astronomy & Astrophysics.

[9]  M. Sheikh-Jabbari,et al.  On problems with cosmography in cosmic dark ages , 2020, Physics Letters B.

[10]  J. Zinn,et al.  Cosmic Distances Calibrated to 1% Precision with Gaia EDR3 Parallaxes and Hubble Space Telescope Photometry of 75 Milky Way Cepheids Confirm Tension with ΛCDM , 2020, 2012.08534.

[11]  M. Malekjani,et al.  A Cosmography Approach to Dark Energy Cosmologies: New Constraints Using the Hubble Diagrams of Supernovae, Quasars, and Gamma-Ray Bursts , 2020, The Astrophysical Journal.

[12]  C. Escamilla-Rivera,et al.  Inverse Cosmography: testing the effectiveness of cosmographic polynomials using machine learning , 2020, Journal of Cosmology and Astroparticle Physics.

[13]  Bharat Ratra,et al.  Using quasar X-ray and UV flux measurements to constrain cosmological model parameters , 2020, 2004.09979.

[14]  S. Capozziello,et al.  High-redshift cosmography: auxiliary variables versus Padé polynomials , 2020, 2003.09341.

[15]  S. Basilakos,et al.  Does $$\varLambda $$CDM really be in tension with the Hubble diagram data? , 2020, 2002.12577.

[16]  K. Mack,et al.  Investigating the Hubble Constant Tension: Two Numbers in the Standard Cosmological Model , 2019, The Astrophysical Journal.

[17]  R. B. Barreiro,et al.  Planck 2018 results , 2018, Astronomy & Astrophysics.

[18]  V. Marra,et al.  Cosmological constrains on minimally and non-minimally coupled scalar field models , 2019, Monthly Notices of the Royal Astronomical Society.

[19]  S. Capozziello,et al.  Connecting early and late epochs by f(z)CDM cosmography , 2019, Journal of Cosmology and Astroparticle Physics.

[20]  Ryan E. Keeley,et al.  A Model-independent Determination of the Hubble Constant from Lensed Quasars and Supernovae Using Gaussian Process Regression , 2019, The Astrophysical Journal.

[21]  M. Paolillo,et al.  Tension with the flat ΛCDM model from a high-redshift Hubble diagram of supernovae, quasars, and gamma-ray bursts , 2019, Astronomy & Astrophysics.

[22]  Min Du,et al.  General cosmography model with spatial curvature , 2019, Monthly Notices of the Royal Astronomical Society.

[23]  M. Rezaei Observational constraints on the oscillating dark energy cosmologies , 2019, Monthly Notices of the Royal Astronomical Society.

[24]  C. Collaboration Search for resonant production of second-generation sleptons with same-sign dimuon events in proton–proton collisions at $$\sqrt{s} = 13\,\text {TeV} $$ s = 13 TeV , 2018, The European Physical Journal C.

[25]  G. Risaliti,et al.  Cosmological constraints from the Hubble diagram of quasars at high redshifts , 2018, Nature Astronomy.

[26]  Ruchika,et al.  Model-independent constraints on dark energy evolution from low-redshift observations , 2018, Monthly Notices of the Royal Astronomical Society.

[27]  Hong Li,et al.  Gaussian processes reconstruction of dark energy from observational data , 2018, The European Physical Journal C.

[28]  S. Capozziello,et al.  Cosmographic analysis with Chebyshev polynomials , 2017, 1712.04380.

[29]  David O. Jones,et al.  The Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample , 2017, The Astrophysical Journal.

[30]  D. Mota,et al.  Constraints to Dark Energy Using PADE Parameterizations , 2017, 1706.02537.

[31]  Wendy L. Freedman,et al.  Cosmology at a crossroads , 2017, Nature Astronomy.

[32]  G. Risaliti,et al.  Quasars as standard candles. I. The physical relation between disc and coronal emission , 2017, 1703.05299.

[33]  S. Basilakos,et al.  Agegraphic dark energy: growth index and cosmological implications , 2016, 1609.01998.

[34]  C. A. Oxborrow,et al.  Planck 2015 results Special feature Planck 2015 results XIV . Dark energy and modified gravity , 2016 .

[35]  J. Solà,et al.  Vacuum models with a linear and a quadratic term in H: structure formation and number counts analysis , 2014, 1412.3785.

[36]  Hao Wei,et al.  Cosmological applications of Padé approximant , 2013, 1312.1117.

[37]  Mathew Smith,et al.  Reconstruction of dark energy and expansion dynamics using Gaussian processes , 2012, 1204.2832.

[38]  R. Nichol,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: measurements of the growth of structure and expansion rate at z = 0.57 from anisotropic clustering , 2012, 1203.6641.

[39]  Antonio Padilla,et al.  Modified Gravity and Cosmology , 2011, 1106.2476.

[40]  Scott Croom,et al.  The WiggleZ Dark Energy Survey: mapping the distance-redshift relation with baryon acoustic oscillations , 2011, 1108.2635.

[41]  Edward J. Wollack,et al.  SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: SKY MAPS, SYSTEMATIC ERRORS, AND BASIC RESULTS , 2010, 1001.4744.

[42]  Sergei D. Odintsov,et al.  Unified cosmic history in modified gravity: From F ( R ) theory to Lorentz non-invariant models , 2010, 1011.0544.

[43]  A. Shafieloo,et al.  A model independent null test on the cosmological constant , 2010, 1004.0960.

[44]  S. Tsujikawa,et al.  f(R) Theories , 2010, Living reviews in relativity.

[45]  M. Viel,et al.  High-Redshift Cosmography , 2009, 0911.1249.

[46]  Alexander S. Szalay,et al.  Baryon Acoustic Oscillations in the Sloan Digital Sky Survey Data Release 7 Galaxy Sample , 2009, 0907.1660.

[47]  S. Nesseris,et al.  Genetic algorithms and supernovae type Ia analysis , 2009, 0903.2805.

[48]  S. Capozziello,et al.  Cosmography and large scale structure by f(R) gravity: new results , 2009, 0902.0088.

[49]  W. M. Wood-Vasey,et al.  Improved Cosmological Constraints from New, Old, and Combined Supernova Data Sets , 2008, 0804.4142.

[50]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[51]  L. Amendola,et al.  Measuring the dark side (with weak lensing) , 2007, 0704.2421.

[52]  H. Hoekstra,et al.  Very weak lensing in the CFHTLS Wide: Cosmology from cosmic shear in the linear regime , 2007, 0712.0884.

[53]  M. Visser,et al.  The Hubble series: convergence properties and redshift variables , 2007, 0710.1887.

[54]  H. Hoekstra,et al.  Cosmological constraints from the 100-deg2 weak-lensing survey , 2007, astro-ph/0703570.

[55]  A. Shafieloo Model-independent reconstruction of the expansion history of the Universe and the properties of dark energy , 2007, astro-ph/0703034.

[56]  Christopher K. I. Williams,et al.  Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning) , 2005 .

[57]  R. Ellis,et al.  The 2dF Galaxy Redshift Survey: power-spectrum analysis of the final data set and cosmological implications , 2005, astro-ph/0501174.

[58]  R. Nichol,et al.  Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies , 2005, astro-ph/0501171.

[59]  S. Allen,et al.  Constraints on dark energy from Chandra observations of the largest relaxed galaxy clusters , 2004, astro-ph/0405340.

[60]  M. Kamionkowski,et al.  Expansion, geometry, and gravity , 2004, astro-ph/0403003.

[61]  Stefano Casertano,et al.  Type Ia Supernova Discoveries at z > 1 from the Hubble Space Telescope: Evidence for Past Deceleration and Constraints on Dark Energy Evolution , 2004, astro-ph/0402512.

[62]  M. Visser Jerk, snap, and the cosmological equation of state , 2003, gr-qc/0309109.

[63]  A. Starobinsky,et al.  Exploring the expanding Universe and dark energy using the statefinder diagnostic , 2003, astro-ph/0303009.

[64]  A. Starobinsky,et al.  Statefinder—A new geometrical diagnostic of dark energy , 2002, astro-ph/0201498.

[65]  S. Carroll The Cosmological Constant , 2000, Living reviews in relativity.

[66]  I. Hook,et al.  Measurements of Ω and Λ from 42 High-Redshift Supernovae , 1998, astro-ph/9812133.

[67]  A. Riess,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[68]  P. Steinhardt,et al.  Cluster Abundance Constraints on Quintessence Models , 1998, astro-ph/9804015.

[69]  G. Veneziano U(1) without instantons , 1979 .