Dynamical Outcomes of Planet-Planet Scattering

Observations in the past decade have revealed extrasolar planets with a wide range of orbital semimajor axes and eccentricities. Based on the present understanding of planet formation via core accretion and oligarchic growth, we expect that giant planets often form in closely packed configurations. While the protoplanets are embedded in a protoplanetary gas disk, dissipation can prevent eccentricity growth and suppress instabilities from becoming manifest. However, once the disk dissipates, eccentricities can grow rapidly, leading to close encounters between planets. Strong planet-planet gravitational scattering could produce both high eccentricities and, after tidal circularization, very short period planets, as observed in the exoplanet population. We present new results for this scenario based on extensive dynamical integrations of systems containing three giant planets, both with and without residual gas disks. We assign the initial planetary masses and orbits in a realistic manner following the core accretion model of planet formation. We show that, with realistic initial conditions, planet-planet scattering can reproduce quite well the observed eccentricity distribution. Our results also make testable predictions for the orbital inclinations of short-period giant planets formed via strong planet scattering followed by tidal circularization.

[1]  R. Paul Butler,et al.  Scientific Frontiers in Research on Extrasolar Planets , 2003 .

[2]  Frank H. Shu,et al.  Photoevaporation of Disks around Massive Stars and Application to Ultracompact H II Regions , 1994 .

[3]  Harold F. Levison,et al.  Models of the collisional damping scenario for ice-giant planets and Kuiper belt formation , 2007, astro-ph/0701544.

[4]  C. Murray,et al.  Solar System Dynamics: Expansion of the Disturbing Function , 1999 .

[5]  S. Tremaine,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 SHRINKING BINARY AND PLANETARY ORBITS BY KOZAI CYCLES WITH TIDAL FRICTION , 2022 .

[6]  D. Johnstone,et al.  Photoevaporation of the Solar Nebula and the Formation of the Giant Planets , 1993 .

[7]  Francesco Marzari,et al.  Eccentric Extrasolar Planets: The Jumping Jupiter Model , 2002 .

[8]  S. Tremaine,et al.  Chaotic variations in the eccentricity of the planet orbiting 16 Cygni B , 1997, Nature.

[9]  J. Faber,et al.  Tidal interactions and disruptions of giant planets on highly eccentric orbits , 2004, astro-ph/0407318.

[10]  Bruce E. Woodgate,et al.  Space Telescope Imaging Spectrograph Coronagraphic Observations of β Pictoris , 2000 .

[11]  T. Mazeh,et al.  The High Eccentricity of the Planet Orbiting 16 Cygni B , 1996, astro-ph/9611135.

[12]  P. Artymowicz DYNAMICS OF BINARY AND PLANETARY SYSTEM INTERACTION WITH DISKS: ECCENTRICITY CHANGES , 1992 .

[13]  Peter Goldreich,et al.  Disk-Satellite Interactions , 1980 .

[14]  R. Greenberg Outcomes of tidal evolution for orbits with arbitrary inclination , 1974 .

[15]  Debra A. Fischer,et al.  A Determination of the Spin-Orbit Alignment of the Anomalously Dense Planet Orbiting HD 149026 , 2007 .

[16]  E. Thommes A Safety Net for Fast Migrators: Interactions between Gap-opening and Sub-Gap-opening Bodies in a Protoplanetary Disk , 2005, astro-ph/0502427.

[17]  Eric B. Ford,et al.  Dynamical Instabilities and the Formation of Extrasolar Planetary Systems , 1996, Science.

[18]  J. Papaloizou,et al.  Dynamical relaxation and massive extrasolar planets , 2001 .

[19]  Shigeru Ida,et al.  On the Origin of Massive Eccentric Planets , 1997 .

[20]  Dynamical Instabilities in Extrasolar Planetary Systems Containing Two Giant Planets , 2000, astro-ph/0010178.

[21]  J. Chambers A hybrid symplectic integrator that permits close encounters between massive bodies , 1999 .

[22]  Bradford A. Smith,et al.  A Circumstellar Disk Around β Pictoris , 1984, Science.

[23]  R. Sari,et al.  Final Stages of Planet Formation , 2004, astro-ph/0404240.

[24]  P. Artymowicz Disk-Satellite Interaction via Density Waves and the Eccentricity Evolution of Bodies Embedded in Disks , 1993 .

[25]  J. Winn,et al.  A Possible Spin-Orbit Misalignment in the Transiting Eccentric Planet HD 17156b , 2007, 0712.2569.

[26]  Origins of Eccentric Extrasolar Planets: Testing the Planet-Planet Scattering Model , 2007, astro-ph/0703163.

[27]  Measurement of the Spin-Orbit Alignment in the Exoplanetary System HD 189733 , 2006, astro-ph/0609506.

[28]  Migration and dynamical relaxation in crowded systems of giant planets , 2003, astro-ph/0301561.

[29]  Z. Sándor,et al.  Stability and formation of the resonant system HD 73526 , 2007, 0706.2128.

[30]  N. Murray,et al.  Planet Migration and Binary Companions: The Case of HD 80606b , 2003, astro-ph/0303010.

[31]  F. Adams,et al.  Long-Term Evolution of Close Planets Including the Effects of Secular Interactions , 2006, astro-ph/0606349.

[32]  E. Ford,et al.  On the Relation between Hot Jupiters and the Roche Limit , 2005, astro-ph/0510198.

[33]  Jack J. Lissauer,et al.  Urey Prize Lecture: On the Diversity of Plausible Planetary Systems , 1995 .

[34]  E. Ford,et al.  The Formation of Ice Giants in a Packed Oligarchy: Instability and Aftermath , 2007, astro-ph/0701745.

[35]  John E. Chambers,et al.  The Stability of Multi-Planet Systems , 1996 .

[36]  Diversity and Origin of 2:1 Orbital Resonances in Extrasolar Planetary Systems , 2003, astro-ph/0401410.

[37]  S. Lubow,et al.  Saturation of the Corotation Resonance in a Gaseous Disk , 2002, astro-ph/0208363.

[38]  Shigeru Ida,et al.  Toward a Deterministic Model of Planetary Formation. II. The Formation and Retention of Gas Giant Planets around Stars with a Range of Metallicities , 2004, astro-ph/0408019.

[39]  C. Clarke,et al.  Photoevaporation of protoplanetary discs - II. Evolutionary models and observable properties , 2006 .

[40]  Eccentricity Evolution for Planets in Gaseous Disks , 2002, astro-ph/0202462.

[41]  William R. Ward,et al.  Survival of Planetary Systems , 1997 .

[42]  Gregory Laughlin,et al.  Effects of Secular Interactions in Extrasolar Planetary Systems , 2006, astro-ph/0606346.

[43]  Brett Gladman,et al.  Dynamics of Systems of Two Close Planets , 1993 .

[44]  D. Lin,et al.  On the tidal interaction between protoplanets and the primordial solar nebula. II: Self-consistent nonlinear interaction , 1986 .

[45]  C. Clarke,et al.  The dispersal of circumstellar discs: the role of the ultraviolet switch , 2001 .

[46]  F. Rasio,et al.  High Orbital Eccentricities of Extrasolar Planets Induced by the Kozai Mechanism , 2005, astro-ph/0502404.

[47]  S. Tremaine,et al.  Dynamical Origin of Extrasolar Planet Eccentricity Distribution , 2007, astro-ph/0703160.

[48]  R. Paul Butler,et al.  Measurement of Spin-Orbit Alignment in an Extrasolar Planetary System , 2005, astro-ph/0504555.

[49]  Francesco Marzari,et al.  Gravitational scattering as a possible origin for giant planets at small stellar distances , 1996, Nature.

[50]  F. Adams,et al.  Giant planet migration through the action of disk torques and planet-planet scattering , 2005, astro-ph/0505234.

[51]  B. Oppenheimer,et al.  The Gemini Deep Planet Survey , 2007, 0705.4290.

[52]  D. Black Possible Observational Criteria for Distinguishing Brown Dwarfs from Planets , 1997, astro-ph/9710150.

[53]  E. Kokubo,et al.  Formation of Protoplanet Systems and Diversity of Planetary Systems , 2002 .

[54]  Andrew Cumming,et al.  The Keck Planet Search: Detectability and the Minimum Mass and Orbital Period Distribution of Extrasolar Planets , 2008, 0803.3357.

[55]  Dynamical relaxation and the orbits of low-mass extrasolar planets , 2002, astro-ph/0203187.

[56]  C. G. Tinney,et al.  Catalog of nearby exoplanets , 2006 .

[57]  Edwin L. Turner,et al.  Measurement of the Rossiter–McLaughlin Effect in the Transiting Exoplanetary System TrES-1 , 2007, astro-ph/0702707.

[58]  D. Lin,et al.  Toward a Deterministic Model of Planetary Formation. I. A Desert in the Mass and Semimajor Axis Distributions of Extrasolar Planets , 2004 .

[59]  M. Nagasawa,et al.  Formation of Hot Planets by a Combination of Planet Scattering, Tidal Circularization, and the Kozai Mechanism , 2008, 0801.1368.

[60]  Philip J. Armitage,et al.  Outward migration of extrasolar planets to large orbital radii , 2003 .

[61]  S. Tremaine,et al.  Excitation and Propagation of Eccentricity Disturbances in Planetary Systems , 2004, astro-ph/0404396.

[62]  Harold F. Levison,et al.  A Multiple Time Step Symplectic Algorithm for Integrating Close Encounters , 1998 .

[63]  Z. Sándor,et al.  On the evolution of the resonant planetary system HD 128311 , 2006, astro-ph/0603664.

[64]  C. G. Tinney,et al.  Four New Exoplanets and Hints of Additional Substellar Companions to Exoplanet Host Stars , 2007 .

[65]  W. Ward Density waves in the solar nebula: planetesimal velocities , 1993 .

[66]  D. Mouillet,et al.  A planet on an inclined orbit as an explanation of the warp in the β Pictoris disc , 1997, astro-ph/9705100.

[67]  L. Prato,et al.  Disk Dissipation in Single and Binary Young Star Systems in Taurus , 1995 .

[68]  Eiichiro Kokubo,et al.  Oligarchic growth of protoplanets , 1996 .

[69]  F. Adams,et al.  Eccentricity evolution of giant planet orbits due to circumstellar disk torques , 2007, 0708.0335.

[70]  On equilibrium tides in fully convective planets and stars , 2003, astro-ph/0312593.

[71]  Dynamics and Origin of the 2:1 Orbital Resonances of the GJ 876 Planets , 2001, astro-ph/0108104.