On Functional Observers for Linear Time-Varying Systems

The technical note deals with existence conditions of a functional observer for linear time-varying systems in the case where the order of the observer is equal to the number of observed variables. Constructive procedures for the design of such a linear functional observer are deduced from the existence conditions. As a specific feature, the proposed procedures do not require the solution of a differential Sylvester equation. Some examples illustrate the presented results.

[1]  H. Trinh,et al.  Functional Observers for Dynamical Systems , 2011 .

[2]  Ian R. Petersen,et al.  Coherent H∞ control for a class of linear complex quantum systems , 2009, 2009 American Control Conference.

[3]  Bo Qi,et al.  Is measurement-based feedback still better for quantum control systems? , 2010, Syst. Control. Lett..

[4]  T. Bullock,et al.  Design of minimal order stable observers for linear functions of the state via realization theory , 1975 .

[5]  Shibei Xue,et al.  Coherent quantum feedback rejection of non-Markovian noises , 2012, Proceedings of the 10th World Congress on Intelligent Control and Automation.

[6]  Tyrone Fernando,et al.  Functional Observability and the Design of Minimum Order Linear Functional Observers , 2010, IEEE Transactions on Automatic Control.

[7]  M. Govindaraju,et al.  The Linear System , 1998 .

[8]  P. Zoller,et al.  Preparation of entangled states by quantum Markov processes , 2008, 0803.1463.

[9]  Sophie Shermer Stabilizing open quantum systems by Markovian reservoir engineering , 2010 .

[10]  V. P. Belavkin,et al.  Quantum stochastic calculus and quantum nonlinear filtering , 1992 .

[11]  B. Shafai,et al.  Minimal order observer design for linear time varying multivariable systems , 1984, The 23rd IEEE Conference on Decision and Control.

[12]  Thomas Kailath,et al.  Linear Systems , 1980 .

[13]  Jing Zhang,et al.  Protecting Coherence and Entanglement by Quantum Feedback Controls , 2010, IEEE Transactions on Automatic Control.

[14]  Francesco Amato,et al.  Linear Time-Varying Systems , 2006 .

[15]  L. Silverman,et al.  Transformation of time-variable systems to canonical (phase-variable) form , 1966 .

[16]  Ian R. Petersen,et al.  Coherent quantum LQG control , 2007, Autom..

[17]  I. Petersen,et al.  Sliding mode control of quantum systems , 2009, 0911.0062.

[18]  Ramon van Handel,et al.  Feedback control of quantum state reduction , 2005, IEEE Transactions on Automatic Control.

[19]  J. Bongiorno,et al.  Observers for linear multivariable systems with applications , 1971 .

[20]  D. Luenberger Observers for multivariable systems , 1966 .

[21]  E. Polak,et al.  System Theory , 1963 .

[22]  L. Silverman,et al.  Controllability and Observability in Time-Variable Linear Systems , 1967 .

[23]  Chi-Tsong Chen,et al.  Linear System Theory and Design , 1995 .

[24]  Bo Qi,et al.  Comparisons between open-loop and feedback controls based on a coherent quantum control model , 2010, Proceedings of the 29th Chinese Control Conference.

[25]  B. Shafai,et al.  Minimal order observer design for linear time varying multivariable systems , 1984 .

[26]  John O'Reilly,et al.  Observers for Linear Systems , 1983 .

[27]  Adi Ben-Israel,et al.  Generalized inverses: theory and applications , 1974 .

[28]  Hieu Trinh,et al.  Reduced-order linear functional observer for linear systems , 1999 .

[29]  Nan K. Loh,et al.  Observer design for time-varying systems , 1991 .

[30]  Wilson J. Rugh,et al.  Linear system theory (2nd ed.) , 1996 .

[31]  Fei Xue,et al.  Quantum control limited by quantum decoherence , 2006 .

[32]  Cuong M. Nguyen,et al.  Design of a state estimator for a class of time-varying multivariable systems , 1985, IEEE Transactions on Automatic Control.

[33]  Mohamed Darouach Existence and design of functional observers for linear systems , 2000, IEEE Trans. Autom. Control..

[34]  University of Toronto,et al.  Conditions for strictly purity-decreasing quantum Markovian dynamics , 2006 .

[35]  Kurt Jacobs,et al.  Information, disturbance and Hamiltonian quantum feedback control , 2001 .

[36]  Stefano Mancini,et al.  Bayesian feedback versus Markovian feedback in a two-level atom , 2002 .

[37]  Maurizio Ciampa,et al.  A Note on Smooth Matrices of Constant Rank , 2005 .

[38]  Timo Eirola,et al.  On Smooth Decompositions of Matrices , 1999, SIAM J. Matrix Anal. Appl..

[39]  Milburn,et al.  Quantum theory of optical feedback via homodyne detection. , 1993, Physical review letters.

[40]  Frédéric Rotella,et al.  Minimal single linear functional observers for linear systems , 2011, Autom..

[41]  Qinghua Zhang,et al.  Adaptive observer for multiple-input-multiple-output (MIMO) linear time-varying systems , 2002, IEEE Trans. Autom. Control..

[42]  W. Rugh Linear System Theory , 1992 .

[43]  B. Shafai,et al.  Design of single-functional observers for linear time-varying multivariable systems , 1989 .

[44]  K. Jacobs,et al.  Rapid state-reduction of quantum systems using feedback control , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[45]  R. J. Miller,et al.  An introduction to the application of the simplest matrix-generalized inverse in systems science , 1978 .

[46]  Rangaswamy Mukundan,et al.  Correction to "On the application of matrix generalized inverses to the design of observers for time-varying and time-invariant linear systems" , 1980 .

[47]  Milburn,et al.  All-optical versus electro-optical quantum-limited feedback. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[48]  Chia-Chi Tsui What is the minimum function observer order , 1998, 2003 European Control Conference (ECC).

[49]  Hideo Mabuchi,et al.  Coherent-feedback quantum control with a dynamic compensator , 2008, 0803.2007.

[50]  Wilfrid Perruquetti,et al.  Fast state estimation in linear time-varying systems: An algebraic approach , 2008, 2008 47th IEEE Conference on Decision and Control.

[51]  Henri Bourlès,et al.  Linear Time-Varying Systems: Algebraic-Analytic Approach , 2011 .

[52]  H. Sirisena Minimal-order observers for linear functions of a state vector† , 1979 .

[53]  Mazyar Mirrahimi,et al.  Stabilizing Feedback Controls for Quantum Systems , 2005, SIAM J. Control. Optim..

[54]  William A. Wolovich,et al.  On state estimation of observable systems , 1968 .

[55]  Chia-Chi Tsui An overview of the applications and solutions of a fundamental matrix equation pair , 2004, J. Frankl. Inst..

[56]  Jochen Trumpf Observers for linear time-varying systems , 2007 .

[57]  Austin P Lund,et al.  Feedback control of nonlinear quantum systems: a rule of thumb. , 2007, Physical review letters.