Macaque Retina Contains an S-Cone OFF Midget Pathway

Psychophysical results suggest that the primate visual system is equally sensitive to both the onset and offset of short-wavelength light and that these responses are carried by separate pathways. However, physiological studies of cells in the retina and lateral geniculate nucleus find far fewer OFF-center than ON-center cells whose receptive-field centers are driven by short-wavelength-sensitive (S) cones. To determine whether S cones contact ON and OFF midget bipolar cells as well as (ON) “blue-cone bipolar” cells (Mariani, 1984), we examined 118 contiguous cone terminals and their bipolar cells in electron micrographs of serial sections from macaque foveal retina. Five widely spaced cone terminals do not contact ON midget bipolar cells. These five cone terminals contact the dendrites of “blue-cone bipolar” cells instead, showing that they are the terminals of S cones. These S-cone terminals are smaller and contain more synaptic ribbons than other terminals. Like neighboring cones, each S cone contacts its own OFF midget bipolar cell via triad-associated (flat) synaptic contacts. Moreover, each S-cone OFF midget bipolar cell has a synaptic terminal in the outer half of the inner plexiform layer, where it contacts an OFF midget ganglion cell.

[1]  J. Krüger,et al.  Stimulus dependent colour specificity of monkey lateral geniculate neurones , 1977, Experimental Brain Research.

[2]  S. Schein,et al.  Inner S‐cone bipolar cells provide all of the central elements for S cones in macaque retina , 2003, The Journal of comparative neurology.

[3]  Kareem M. Ahmad,et al.  Cell density ratios in a foveal patch in macaque retina , 2003, Visual Neuroscience.

[4]  R. Shapley,et al.  Space and Time Maps of Cone Photoreceptor Signals in Macaque Lateral Geniculate Nucleus , 2002, The Journal of Neuroscience.

[5]  K Knoblauch,et al.  Relating cone signals to color appearance: Failure of monotonicity in yellow/blue , 2001, Visual Neuroscience.

[6]  A B Metha,et al.  Transmission of spatial information in S-cone pathways , 2001, Visual Neuroscience.

[7]  David J. Calkins,et al.  Seeing with S cones , 2001, Progress in Retinal and Eye Research.

[8]  P. Lennie,et al.  Packing arrangement of the three cone classes in primate retina , 2001, Vision Research.

[9]  H. Wässle,et al.  The Synaptic Architecture of AMPA Receptors at the Cone Pedicle of the Primate Retina , 2001, The Journal of Neuroscience.

[10]  K T Mullen,et al.  Bipolar or rectified chromatic detection mechanisms? , 2001, Visual Neuroscience.

[11]  Rhea T Eskew,et al.  ON and OFF S-cone pathways have different long-wave cone inputs , 2000, Vision Research.

[12]  D. Dacey Parallel pathways for spectral coding in primate retina. , 2000, Annual review of neuroscience.

[13]  D. Dacey Primate retina: cell types, circuits and color opponency , 1999, Progress in Retinal and Eye Research.

[14]  David J. Calkins,et al.  Evidence that Circuits for Spatial and Color Vision Segregate at the First Retinal Synapse , 1999, Neuron.

[15]  D. Baylor,et al.  Receptive-field microstructure of blue-yellow ganglion cells in primate retina , 1999, Nature Neuroscience.

[16]  Leon Lagnado,et al.  The retina , 1999, Current Biology.

[17]  L. Spillmann,et al.  S-cone signals to temporal OFF-channels: asymmetrical connections to postreceptoral chromatic mechanisms , 1999, Vision Research.

[18]  R. L. Valois,et al.  Temporal dynamics of chromatic tuning in macaque primary visual cortex , 1998, Nature.

[19]  Robert Shapley,et al.  Neurobiology: In the mind's eye of the beholder , 1998, Nature.

[20]  David J. Calkins,et al.  Microcircuitry and Mosaic of a Blue–Yellow Ganglion Cell in the Primate Retina , 1998, The Journal of Neuroscience.

[21]  H. Kolb,et al.  Uniqueness of the S‐cone pedicle in the human retina and consequences for color processing , 1997, The Journal of comparative neurology.

[22]  D. Marshak,et al.  The topographical relationship between two neuronal mosaics in the short wavelength-sensitive system of the primate retina , 1997, Visual Neuroscience.

[23]  P. Sterling,et al.  Foveal Cones form Basal as well as Invaginating Junctions with Diffuse ON Bipolar Cells , 1996, Vision Research.

[24]  E. Chichilnisky,et al.  Seeing gray through the ON and OFF pathways , 1996, Visual Neuroscience.

[25]  S. Schwartz Spectral sensitivity as revealed by isolated step onsets and step offsets. , 1996, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[26]  B. Wandell Foundations of vision , 1995 .

[27]  David J. Calkins,et al.  M and L cones in macaque fovea connect to midget ganglion cells by different numbers of excitatory synapses , 1994, Nature.

[28]  J. Pokorny,et al.  Effect of sawtooth polarity on chromatic and luminance detection , 1994, Visual Neuroscience.

[29]  Barry B. Lee,et al.  The 'blue-on' opponent pathway in primate retina originates from a distinct bistratified ganglion cell type , 1994, Nature.

[30]  D. Dacey Morphology of a small-field bistratified ganglion cell type in the macaque and human retina , 1993, Visual Neuroscience.

[31]  Peter Sterling,et al.  Gap junctions between the pedicles of macaque foveal cones , 1992, Vision Research.

[32]  Kenneth R. Sloan,et al.  Surfaces from contours , 1992, TOGS.

[33]  D. Marshak,et al.  Bipolar cells specific for blue cones in the macaque retina , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[34]  J. M. Hopkins,et al.  Synaptic contacts of a two-cone flat bipolar cell in a primate retina , 1992, Visual Neuroscience.

[35]  A. Milam,et al.  Distribution and morphology of human cone photoreceptors stained with anti‐blue opsin , 1991, The Journal of comparative neurology.

[36]  R. W. Rodieck Which Cells Code for Color , 1991 .

[37]  Barry B. Lee,et al.  From pigments to perception : advances in understanding visual processes , 1991 .

[38]  H. Kolb,et al.  Identification of pedicles of putative blue‐sensitive cones in the human retina , 1990, The Journal of comparative neurology.

[39]  G. C. Duncan,et al.  Contribution of the retinal ON channels to scotopic and photopic spectral sensitivity , 1989, Visual Neuroscience.

[40]  S. Shevell,et al.  Color perception under chromatic adaptation: Red/green equilibria with adapted short-wavelength-sensitive cones , 1988, Vision Research.

[41]  S. Schein Anatomy of macaque fovea and spatial densities of neurons in foveal representation , 1988, The Journal of comparative neurology.

[42]  Robert G. Smith Montage: a system for three-dimensional reconstruction by personal computer , 1987, Journal of Neuroscience Methods.

[43]  Barry B. Lee,et al.  Neurones with strong inhibitory s-cone inputs in the macaque lateral geniculate nucleus , 1986, Vision Research.

[44]  John H. R. Maunsell,et al.  Functions of the ON and OFF channels of the visual system , 1986, Nature.

[45]  R. W. Rodieck,et al.  Parasol and midget ganglion cells of the human retina , 1985, The Journal of comparative neurology.

[46]  S. Schein,et al.  Density profile of blue-sensitive cones along the horizontal meridian of macaque retina. , 1985, Investigative ophthalmology & visual science.

[47]  R. W. Rodieck,et al.  Parasol and midget ganglion cells of the primate retina , 2004 .

[48]  P. Lennie,et al.  Chromatic mechanisms in lateral geniculate nucleus of macaque. , 1984, The Journal of physiology.

[49]  A. Mariani Bipolar cells in monkey retina selective for the cones likely to be blue-sensitive , 1984, Nature.

[50]  Priv.-Doz. Dr. med. habil. Eberhart Zrenner Neurophysiological Aspects of Color Vision in Primates , 1983, Studies of Brain Function.

[51]  E. Zrenner,et al.  Characteristics of the blue sensitive cone mechanism in primate retinal ganglion cells , 1981, Vision Research.

[52]  David R. Williams,et al.  Punctate sensitivity of the blue-sensitive mechanism , 1981, Vision Research.

[53]  M. Slaughter,et al.  2-amino-4-phosphonobutyric acid: a new pharmacological tool for retina research. , 1981, Science.

[54]  J. Werner,et al.  Short-wave cone input to the red-green opponent channel , 1979, Vision Research.

[55]  F. D. de Monasterio Asymmetry of on- and off-pathways of blue-sensitive cones of the retina of macaques. , 1979, Brain research.

[56]  H. Kolb,et al.  Intracellular staining reveals different levels of stratification for on- and off-center ganglion cells in cat retina. , 1978, Journal of neurophysiology.

[57]  Peter H. Schiller,et al.  Lack of blue OFF-center cells in the visual system of the monkey , 1978, Brain Research.

[58]  E. V. Famiglietti,et al.  Structural basis for ON-and OFF-center responses in retinal ganglion cells. , 1976, Science.

[59]  R. W. Rodieck,et al.  Identification, classification and anatomical segregation of cells with X‐like and Y‐like properties in the lateral geniculate nucleus of old‐world primates. , 1976, The Journal of physiology.

[60]  R. Marrocco,et al.  Sustained and transient cells in monkey lateral geniculate nucleus: conduction velocites and response properties. , 1976, Journal of neurophysiology.

[61]  P. Gouras,et al.  Functional properties of ganglion cells of the rhesus monkey retina. , 1975, The Journal of physiology.

[62]  D. Tolhurst,et al.  Concealed colour opponency in ganglion cells of the rhesus monkey retina. , 1975, The Journal of physiology.

[63]  H. Kolb,et al.  Organization of the outer plexiform layer of the primate retina: electron microscopy of Golgi-impregnated cells. , 1970, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[64]  B. Boycott,et al.  Organization of the Primate Retina: Light Microscopy , 1969 .

[65]  B. Boycott,et al.  Organization of the primate retina: electron microscopy , 1966, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[66]  D. Hubel,et al.  Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. , 1966, Journal of neurophysiology.

[67]  R. L. Valois,et al.  Analysis of response patterns of LGN cells. , 1966, Journal of the Optical Society of America.

[68]  D. Jameson,et al.  An opponent-process theory of color vision. , 1957, Psychological review.