Mineral-Inspired Crystal Growth and Physical Properties of Na2Cu(SO4)2 and Review of Na2M(SO4)2(H2O)x (x = 0–6) Compounds

Single crystals and polycrystalline samples of a synthetic analogue of saranchinaite, Na2Cu(SO4)2, have been prepared by two different methods. The structural analysis revealed unusual heptahedral CuO7 coordination [4 + 1 + 2] of Cu2+ cations in its crystal structure. The title compound crystallizes in the noncentrosymmetric space group P21 and exhibits the averaged nonlinear coefficient ⟨d⟩ = 1.4[d14(SiO2)] ≈ 0.5 pm/V. Electrochemical tests showed a limited electrochemical performance and low mobility of Na ions in the structure. The magnetic properties of Na2Cu(SO4)2 reflect its crystal structure with half of copper cations as mainly paramagnetic and the other half as strongly engaged in antiferromagnetic dimer interactions. Analysis of the synthesis methods for preparation of the other Na-containing anhydrous sulfates is reported. Dehydration of the Na2M(SO4)2(H2O)x (x = 0–6) phases, various structure types, and the structural complexity of Na2M(SO4)2 (M = Mn, Co, Ni, Cu, Zn, Cd) compounds are also dis...

[1]  Vadim M. Kovrugin,et al.  Synthesis and structural variety of first Mn and Bi selenites and selenite chlorides , 2018, Zeitschrift für Kristallographie - Crystalline Materials.

[2]  Jean-Marie Tarascon,et al.  Sulfate-Based Cathode Materials for Li- and Na-Ion Batteries. , 2018, Chemical record.

[3]  Vadim M. Kovrugin,et al.  A High Voltage Cathode Material for Sodium Batteries: Na3V(PO4)2. , 2018, Inorganic chemistry.

[4]  Chol-Jun Yu,et al.  First-principles study of mixed eldfellite compounds Nax(Fe1/2M1/2)(SO4)2 (x=0–2, M = Mn, Co, Ni): A new family of high electrode potential cathodes for the sodium-ion battery , 2018 .

[5]  Vadim M. Kovrugin,et al.  Saranchinaite, Na2Cu(SO4)2, a new exhalative mineral from Tolbachik volcano, Kamchatka, Russia, and a product of the reversible dehydration of kröhnkite, Na2Cu(SO4)2(H2O)2 , 2018, Mineralogical Magazine.

[6]  S. Filatov,et al.  Hermannjahnite, CuZn(SO4)2, a new mineral with chalcocyanite derivative structure from the Naboko scoria cone of the 2012–2013 fissure eruption at Tolbachik volcano, Kamchatka, Russia , 2018, Mineralogy and Petrology.

[7]  S. Krivovichev Ladders of information: what contributes to the structural complexity of inorganic crystals , 2018 .

[8]  T. Rojo,et al.  Na 2.5 Fe 1.75 (SO 4 ) 3 /Ketjen/rGO: An advanced cathode composite for sodium ion batteries , 2017 .

[9]  S. Filatov,et al.  Copper oxosulphates from fumaroles of Tolbachik volcano: puninite, Na2Cu3O(SO4)3 –a new mineral species and structure refinements of kamchatkite and alumoklyuchevskite , 2017 .

[10]  D. Nihtianova,et al.  Mixed sodium nickel-manganese sulfates: Crystal structure relationships between hydrates and anhydrous salts , 2017 .

[11]  A. Yamada,et al.  Polyanionic Solid-Solution Cathodes for Rechargeable Batteries , 2017 .

[12]  J. Tarascon,et al.  Synthesis, Structure, and Electrochemical Properties of K-Based Sulfates K2M2(SO4)3 with M = Fe and Cu. , 2017, Inorganic chemistry.

[13]  E. Kendrick,et al.  Investigation into the effect on structure of oxoanion doping in Na2M(SO4)2·2H2O , 2016 .

[14]  N. Bolotina,et al.  Hydrothermal Synthesis and Structure Solution of Na2Ca(CO3)2: “Synthetic Analogue” of Mineral Nyerereite , 2016 .

[15]  Prabeer Barpanda,et al.  Sulfate Chemistry for High‐Voltage Insertion Materials: Synthetic, Structural and Electrochemical Insights , 2015 .

[16]  J. Tarascon,et al.  Li2Cu2O(SO4)2: a Possible Electrode for Sustainable Li-Based Batteries Showing a 4.7 V Redox Activity vs Li+/Li0 , 2015 .

[17]  Vadim M. Kovrugin,et al.  Emulating exhalative chemistry: synthesis and structural characterization of ilinskite, Na[Cu5O2](SeO3)2Cl3, and its K-analogue , 2015, Mineralogy and Petrology.

[18]  N. Drichko,et al.  Unique edge-sharing sulfate-transition metal coordination in Na{sub 2}M(SO{sub 4}){sub 2} (M=Ni and Co) , 2015 .

[19]  A. P. Shevchenko,et al.  Applied Topological Analysis of Crystal Structures with the Program Package ToposPro , 2014 .

[20]  V. Petříček,et al.  Crystallographic Computing System JANA2006: General features , 2014 .

[21]  Atsuo Yamada,et al.  Kröhnkite-Type Na2Fe(SO4)2·2H2O as a Novel 3.25 V Insertion Compound for Na-Ion Batteries , 2014 .

[22]  Jean-Marie Tarascon,et al.  Sulfate-Based Polyanionic Compounds for Li-Ion Batteries: Synthesis, Crystal Chemistry, and Electrochemistry Aspects , 2014 .

[23]  S. Krivovichev Which inorganic structures are the most complex? , 2014, Angewandte Chemie.

[24]  Christian Masquelier,et al.  Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries. , 2013, Chemical reviews.

[25]  S. Krivovichev,et al.  Structural complexity of minerals: information storage and processing in the mineral world , 2013, Mineralogical Magazine.

[26]  J. Wray,et al.  Occurrences of possible hydrated sulfates in the southern high latitudes of Mars , 2012 .

[27]  G. Ventruti,et al.  Crystal structure of Na3Fe(SO4)3: A high-temperature product (∼400 °C) of sideronatrite [Na2Fe(SO4)2OH⋅3H2O] , 2011 .

[28]  G. Madras,et al.  Manipulation of the Hydration Levels in Minerals of Sodium Cadmium Bisulfate toward the Design of Functional Materials , 2011 .

[29]  Fereshteh Bakhtiari,et al.  One-step synthesis of tenorite (CuO) nano-particles from Cu4 (SO4) (OH) 6 by direct thermal-decomposition method , 2011 .

[30]  G. Desiraju,et al.  Using Water as a Design Element in Crystal Engineering. Host−Guest Compounds of Hydrated 3,5-Dihydroxybenzoic Acid , 2010 .

[31]  W. Depmeier Minerals as advanced materials , 2009 .

[32]  T. N. Guru Row,et al.  In situ phase separation following dehydration in bimetallic sulfates: a variable-temperature X-ray diffraction study. , 2009, Inorganic chemistry.

[33]  T. N. Guru Row,et al.  High-temperature phase transition studies in a novel fast ion conductor, Na2Cd(SO4)2, probed by Raman spectroscopy. , 2009, The journal of physical chemistry. A.

[34]  Diptikanta Swain,et al.  Structure, ionic conduction and dielectric relaxation in a novel fast ion conductor, Na2Cd(SO4)2 , 2007 .

[35]  Jian Zheng,et al.  Hydrothermal synthesis, structure and thermal property of a 2-dimensional network: sodium sulfate [Ni(H2O)6(NaSO4)2] , 2006 .

[36]  P. Cox,et al.  The hydrothermal synthesis of zeolites: Precursors, intermediates and reaction mechanism , 2005 .

[37]  R. W. Berg,et al.  The reaction between ZnO and molten Na2S2O7 or K2S2O7 forming Na2Zn(SO4)2 orK2Zn(SO4)2, studied by Raman spectroscopy and x-ray diffraction. , 2005, Inorganic chemistry.

[38]  M. Wildner,et al.  Blödite-type compounds Na2Me(SO4)2·4H2O (Me=Mg, Co, Ni, Zn): crystal structures and hydrogen bonding systems , 2004 .

[39]  A. Möller,et al.  Synthesis and characterization of Na11[CuO4][SO4]3 , 2004 .

[40]  A. Möller,et al.  Reactivity, Syntheses, and Crystal Structures of Na5[MO2][X] with M = Co+, Ni+, Cu+; X = CO32—, SO42—, SO32—, S2—, and Na25[CuO2]5[SO4]4[S] , 2003 .

[41]  M. T. Casais,et al.  Evolution of the Jahn-Teller distortion of MnO6 octahedra in RMnO3 perovskites (R = Pr, Nd, Dy, Tb, Ho, Er, Y): a neutron diffraction study. , 2000, Inorganic chemistry.

[42]  John B. Goodenough,et al.  Mapping of Transition Metal Redox Energies in Phosphates with NASICON Structure by Lithium Intercalation , 1997 .

[43]  G. Papatheodorou,et al.  Crystal structure and vibrational spectra of disodium oxo(disulfato)vanadate , 1990 .

[44]  J. Berger Infrared and Raman spectra of CuSO4, 5H2O; CuSO4, 5D2O; and CuSeO4, 5H2O , 1976 .

[45]  S. Meshitsuka,et al.  Infrared spectra and lattice vibrations of alkali and alkaline—earth metal sulfates , 1975 .

[46]  S. K. Kurtz,et al.  A powder technique for the evaluation of nonlinear optical materials , 1968 .

[47]  S. Ross,et al.  Forbidden transitions in the infra-red spectra of tetrahedral anions—III. Spectra-structure correlations in perchlorates, sulphates and phosphates of the formula MXO4 , 1966 .

[48]  J. C. Decius,et al.  The vibrational spectra of sulfate ions in alkali halide crystals , 1963 .

[49]  Vadim M. Kovrugin,et al.  Pathways for synthesis of new selenium-containing oxo-compounds: Chemical vapor transport reactions, hydrothermal techniques and evaporation method , 2017 .

[50]  K. Knight,et al.  University of Birmingham Investigation into the dehydration of selenate doped Na2M(SO4)2·2H2O (M = Mn, Fe, Co and Ni): stabilisation of the high Na content alluaudite phases Na3M1.5(SO4)3-1.5x(SeO4)1.5x (M = Mn, Co and Ni) through selenate incorporation , 2017 .

[51]  S. Krivovichev Minerals as Advanced Materials II , 2012 .

[52]  S. Krivovichev Minerals as advanced materials I , 2008 .

[53]  M. Wildner,et al.  Crystal structures and crystal chemical relationships of kröhnkite- and collinsite-type compounds Na2Me2+(XO4)2 · 2 H2O (X = S, Me = Mn, Cd; and X = Se, Me = Mn, Co, Ni, Zn, Cd) and K2Co(SeO4)2 · 2 H2O , 2003 .

[54]  J. Møller,et al.  Crystal Structure and Spectroscopic Characterization of a Green V(IV) Compound, Na8(VO)2(SO4)6. , 1999 .

[55]  U. Ragnarsson,et al.  SYNTHESIS AND CRYSTAL STRUCTURE OF NA3V(SO4)3. SPECTROSCOPIC CHARACTERIZATION OF NA3V(SO4)3 AND NAV(SO4)2 , 1994 .

[56]  G. Papatheodorou,et al.  The crystal structure of NaV(SO4)2 , 1991 .