On the descriptor variable observation of rectangular implicit representations

Recently, it has been shown that the implicit rectangular descriptions can be successfully used for modelling and controlling broad classes of linear systems, including systems with internal switches. This technique consists in finding first the degree of freedom, characterizing the internal variable structure, and then making it unobservable by means of a proportional and derivative descriptor variable. Up to now, there is no descriptor variable observer scheme for implicit rectangular systems. In this paper we propose two different ways for observing the descriptor variable: a descriptor variable observer based on fault detection and a descriptor variable observer based on adaptive structure detection. The first proposition is realized by continuous linear filters, which is performed for minimum phase systems. The second proposition is based on an adaptive structure detection which guarantees detection in a finite time.

[1]  Vadim Azhmyakov,et al.  An implicit systems characterization of a class of impulsive linear switched control processes. Part 1: Modeling , 2015 .

[2]  Jean Jacques Loiseau,et al.  Implicit systems reachability: A geometric point of view , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[3]  F. R. Gantmakher The Theory of Matrices , 1984 .

[4]  K. Ozcaldiran Control of descriptor systems , 1985 .

[5]  Michel Malabre,et al.  Geometric characterization of Lewis Structure Algorithm , 1994 .

[6]  J. Aubin,et al.  Viability Kernel of Control Systems , 1991 .

[7]  G. Duan Analysis and Design of Descriptor Linear Systems , 2010 .

[8]  A. Vardulakis Linear Multivariable Control: Algebraic Analysis and Synthesis Methods , 1991 .

[9]  George C. Verghese,et al.  Further notes on singular descriptions , 1981 .

[10]  L. Dai,et al.  Singular Control Systems , 1989, Lecture Notes in Control and Information Sciences.

[11]  J. M. Schumacher,et al.  Minimality of descriptor representations under external equivalence , 1991, Autom..

[12]  Michel Malabre,et al.  Description of switched systems by implicit representations , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[13]  Michel Malabre,et al.  On the control of linear systems having internal variations , 2003, Autom..

[14]  Rolf Isermann,et al.  Process Fault Detection Based on Modeling and Estimation Methods , 1982 .

[15]  H. Rosenbrock,et al.  State-space and multivariable theory, , 1970 .

[16]  M. Malabre,et al.  Almost rejection of internal structural variations in linear systems , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[17]  Ali Saberi,et al.  Fundamental problems in fault detection and identification , 2000 .

[18]  Thomas Kailath,et al.  Linear Systems , 1980 .

[19]  M. Malabre More geometry about singular systems , 1987, 26th IEEE Conference on Decision and Control.

[20]  Michel Malabre,et al.  ON THE CONTROL OF LINEAR SYSTEMS HAVING INTERNAL VARIATIONS, PART I—REACHABILITY , 2002 .

[21]  Michel Malabre,et al.  Matching a system behavior with a known set of models: A quadratic optimization‐based adaptive solution , 2009 .

[22]  J. Willems Input-output and state-space representations of finite-dimensional linear time-invariant systems , 1983 .

[23]  Jeffrey S. Rosenthal,et al.  Introduction to mathematical systems theory. a behavioral approach [Book Review] , 2002, IEEE Transactions on Automatic Control.

[24]  Michel Malabre,et al.  Structural matrix minimization algorithm for implicit descriptions , 1997, Autom..

[25]  Jean Jacques Loiseau,et al.  Proportional and proportional-derivative canonical forms for descriptor systems with outputs , 1994, Autom..

[26]  Johannes Schumacher,et al.  An Introduction to Hybrid Dynamical Systems, Springer Lecture Notes in Control and Information Sciences 251 , 1999 .

[27]  Ton Geerts Solvability conditions, consistency, and weak consistency for linear differential-algebraic equations and time-invariant singular systems: the general case , 1993 .

[28]  Michel Malabre,et al.  Geometric minimization under external equivalence for implicit descriptions , 1995, Autom..

[29]  Alan S. Willsky,et al.  A survey of design methods for failure detection in dynamic systems , 1976, Autom..

[30]  W. Wonham Linear Multivariable Control: A Geometric Approach , 1974 .

[31]  Jean Jacques Loiseau,et al.  Simultaneous state and input reachability for linear time invariant systems , 2013 .

[32]  Hyungbo Shim,et al.  Observability for Switched Linear Systems: Characterization and Observer Design , 2013, IEEE Transactions on Automatic Control.

[33]  François Delebecque,et al.  Numerically constructible observers for linear time-varying descriptor systems , 2001, Autom..

[34]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[35]  J. Schumacher,et al.  A nine-fold canonical decomposition for linear systems , 1984 .

[36]  Daniel Liberzon,et al.  Switching in Systems and Control , 2003, Systems & Control: Foundations & Applications.

[37]  T. Berger,et al.  Hamburger Beiträge zur Angewandten Mathematik Controllability of linear differential-algebraic systems-A survey , 2012 .

[38]  Frank L. Lewis,et al.  A tutorial on the geometric analysis of linear time-invariant implicit systems , 1992, Autom..

[39]  K. Narendra,et al.  A common Lyapunov function for stable LTI systems with commuting A-matrices , 1994, IEEE Trans. Autom. Control..

[40]  Robert Shorten,et al.  Necessary and sufficient conditions for the existence of a common quadratic Lyapunov function for a finite number of stable second order linear time‐invariant systems , 2002 .

[41]  Jan C. Willems,et al.  Introduction to mathematical systems theory: a behavioral approach, Texts in Applied Mathematics 26 , 1999 .