Isogeometric analysis using T-splines

[1]  W. Marsden I and J , 2012 .

[2]  D. F. Rogers,et al.  An Introduction to NURBS: With Historical Perspective , 2011 .

[3]  Ronald Maier,et al.  Integrated Modeling , 2011, Encyclopedia of Knowledge Management.

[4]  T. Hughes,et al.  Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes , 2010 .

[5]  T. Hughes,et al.  Efficient quadrature for NURBS-based isogeometric analysis , 2010 .

[6]  B. Simeon,et al.  Adaptive isogeometric analysis by local h-refinement with T-splines , 2010 .

[7]  Thomas J. R. Hughes,et al.  n-Widths, sup–infs, and optimality ratios for the k-version of the isogeometric finite element method , 2009 .

[8]  T. Hughes,et al.  Isogeometric analysis of the Cahn–Hilliard phase-field model , 2008 .

[9]  Alessandro Reali,et al.  Duality and unified analysis of discrete approximations in structural dynamics and wave propagation : Comparison of p-method finite elements with k-method NURBS , 2008 .

[10]  Victor M. Calo,et al.  Multiphysics model for blood flow and drug transport with application to patient-specific coronary artery flow , 2008 .

[11]  T. Hughes,et al.  Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .

[12]  Hongwei Lin,et al.  Watertight trimmed NURBS , 2008, ACM Trans. Graph..

[13]  W. Wall,et al.  Isogeometric structural shape optimization , 2008 .

[14]  T. Hughes,et al.  B¯ and F¯ projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements , 2008 .

[15]  Thomas J. R. Hughes,et al.  NURBS-based isogeometric analysis for the computation of flows about rotating components , 2008 .

[16]  Hong Qin,et al.  Polycube splines , 2007, Comput. Aided Des..

[17]  G. T. Finnigan Arbitrary Degree T-Splines , 2008 .

[18]  Mircea D. Farcas,et al.  About Bernstein polynomials , 2008 .

[19]  G. Sangalli,et al.  A fully ''locking-free'' isogeometric approach for plane linear elasticity problems: A stream function formulation , 2007 .

[20]  T. Hughes,et al.  Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows , 2007 .

[21]  Victor M. Calo,et al.  The role of continuity in residual-based variational multiscale modeling of turbulence , 2007 .

[22]  Hong Qin,et al.  Harmonic volumetric mapping for solid modeling applications , 2007, Symposium on Solid and Physical Modeling.

[23]  Alessandro Reali,et al.  Studies of Refinement and Continuity in Isogeometric Structural Analysis (Preprint) , 2007 .

[24]  Thomas J. R. Hughes,et al.  Patient-Specific Vascular NURBS Modeling for Isogeometric Analysis of Blood Flow , 2007, IMR.

[25]  Alessandro Reali,et al.  Isogeometric Analysis of Structural Vibrations , 2006 .

[26]  T. Hughes,et al.  ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .

[27]  T. Hughes,et al.  Isogeometric Fluid–structure Interaction Analysis with Applications to Arterial Blood Flow , 2006 .

[28]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[29]  E. Rank,et al.  High order finite elements for shells , 2005 .

[30]  William Buxton,et al.  Ten CAD challenges , 2005, IEEE Computer Graphics and Applications.

[31]  Tom Lyche,et al.  T-spline simplification and local refinement , 2004, ACM Trans. Graph..

[32]  王东东,et al.  Computer Methods in Applied Mechanics and Engineering , 2004 .

[33]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[34]  Ahmad H. Nasri,et al.  T-splines and T-NURCCs , 2003, ACM Trans. Graph..

[35]  W. Boehm,et al.  Bezier and B-Spline Techniques , 2002 .

[36]  Peter Schröder,et al.  Integrated modeling, finite-element analysis, and engineering design for thin-shell structures using subdivision , 2002, Comput. Aided Des..

[37]  G. Farin Curves and Surfaces for Cagd: A Practical Guide , 2001 .

[38]  Michael Ortiz,et al.  Fully C1‐conforming subdivision elements for finite deformation thin‐shell analysis , 2001, International Journal for Numerical Methods in Engineering.

[39]  M. Ortiz,et al.  Subdivision surfaces: a new paradigm for thin‐shell finite‐element analysis , 2000 .

[40]  Sheila A. Martin,et al.  Interoperability Cost Analysis of the U.S. Automotive Supply Chain , 1999 .

[41]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[42]  W. Thurston,et al.  Three-Dimensional Geometry and Topology, Volume 1 , 1997, The Mathematical Gazette.

[43]  Josef Hoschek,et al.  Fundamentals of computer aided geometric design , 1996 .

[44]  G. Farin NURB curves and surfaces: from projective geometry to practical use , 1995 .

[45]  J. Warren,et al.  Subdivision methods for geometric design , 1995 .

[46]  Gerald Farin,et al.  Curves and surfaces for cagd , 1992 .

[47]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[48]  Thomas J. R. Hughes,et al.  A mixed finite element formulation for Reissner—Mindlin plate theory: uniform convergence of all higher-order spaces , 1988 .

[49]  R HughesTJ,et al.  ライスナー,ミンドリン平板理論に関する混合有限要素定式化 全高次空間の一様収束 , 1988 .

[50]  Wing Kam Liu,et al.  Stress projection for membrane and shear locking in shell finite elements , 1985 .

[51]  Ron Goldman,et al.  Implicit representation of parametric curves and surfaces , 1984, Comput. Vis. Graph. Image Process..

[52]  W. Thurston Three dimensional manifolds, Kleinian groups and hyperbolic geometry , 1982 .

[53]  John Stillwell,et al.  Three-Dimensional Manifolds , 1980 .

[54]  E. Catmull,et al.  Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .

[55]  D. Epstein,et al.  Three-dimensional manifolds , 1960 .

[56]  Magdalena Ortiz,et al.  Fully C1‐conforming subdivision elements for finite deformation thin‐shell analysis , 2022 .