Isogeometric analysis using T-splines
暂无分享,去创建一个
John A. Evans | T. Hughes | T. Sederberg | Y. Bazilevs | J. Cottrell | V. Calo | S. Lipton | M. Scott
[1] W. Marsden. I and J , 2012 .
[2] D. F. Rogers,et al. An Introduction to NURBS: With Historical Perspective , 2011 .
[3] Ronald Maier,et al. Integrated Modeling , 2011, Encyclopedia of Knowledge Management.
[4] T. Hughes,et al. Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes , 2010 .
[5] T. Hughes,et al. Efficient quadrature for NURBS-based isogeometric analysis , 2010 .
[6] B. Simeon,et al. Adaptive isogeometric analysis by local h-refinement with T-splines , 2010 .
[7] Thomas J. R. Hughes,et al. n-Widths, sup–infs, and optimality ratios for the k-version of the isogeometric finite element method , 2009 .
[8] T. Hughes,et al. Isogeometric analysis of the Cahn–Hilliard phase-field model , 2008 .
[9] Alessandro Reali,et al. Duality and unified analysis of discrete approximations in structural dynamics and wave propagation : Comparison of p-method finite elements with k-method NURBS , 2008 .
[10] Victor M. Calo,et al. Multiphysics model for blood flow and drug transport with application to patient-specific coronary artery flow , 2008 .
[11] T. Hughes,et al. Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .
[12] Hongwei Lin,et al. Watertight trimmed NURBS , 2008, ACM Trans. Graph..
[13] W. Wall,et al. Isogeometric structural shape optimization , 2008 .
[14] T. Hughes,et al. B¯ and F¯ projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements , 2008 .
[15] Thomas J. R. Hughes,et al. NURBS-based isogeometric analysis for the computation of flows about rotating components , 2008 .
[16] Hong Qin,et al. Polycube splines , 2007, Comput. Aided Des..
[17] G. T. Finnigan. Arbitrary Degree T-Splines , 2008 .
[18] Mircea D. Farcas,et al. About Bernstein polynomials , 2008 .
[19] G. Sangalli,et al. A fully ''locking-free'' isogeometric approach for plane linear elasticity problems: A stream function formulation , 2007 .
[20] T. Hughes,et al. Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows , 2007 .
[21] Victor M. Calo,et al. The role of continuity in residual-based variational multiscale modeling of turbulence , 2007 .
[22] Hong Qin,et al. Harmonic volumetric mapping for solid modeling applications , 2007, Symposium on Solid and Physical Modeling.
[23] Alessandro Reali,et al. Studies of Refinement and Continuity in Isogeometric Structural Analysis (Preprint) , 2007 .
[24] Thomas J. R. Hughes,et al. Patient-Specific Vascular NURBS Modeling for Isogeometric Analysis of Blood Flow , 2007, IMR.
[25] Alessandro Reali,et al. Isogeometric Analysis of Structural Vibrations , 2006 .
[26] T. Hughes,et al. ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .
[27] T. Hughes,et al. Isogeometric Fluid–structure Interaction Analysis with Applications to Arterial Blood Flow , 2006 .
[28] T. Hughes,et al. Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .
[29] E. Rank,et al. High order finite elements for shells , 2005 .
[30] William Buxton,et al. Ten CAD challenges , 2005, IEEE Computer Graphics and Applications.
[31] Tom Lyche,et al. T-spline simplification and local refinement , 2004, ACM Trans. Graph..
[32] 王东东,et al. Computer Methods in Applied Mechanics and Engineering , 2004 .
[33] John Hart,et al. ACM Transactions on Graphics , 2004, SIGGRAPH 2004.
[34] Ahmad H. Nasri,et al. T-splines and T-NURCCs , 2003, ACM Trans. Graph..
[35] W. Boehm,et al. Bezier and B-Spline Techniques , 2002 .
[36] Peter Schröder,et al. Integrated modeling, finite-element analysis, and engineering design for thin-shell structures using subdivision , 2002, Comput. Aided Des..
[37] G. Farin. Curves and Surfaces for Cagd: A Practical Guide , 2001 .
[38] Michael Ortiz,et al. Fully C1‐conforming subdivision elements for finite deformation thin‐shell analysis , 2001, International Journal for Numerical Methods in Engineering.
[39] M. Ortiz,et al. Subdivision surfaces: a new paradigm for thin‐shell finite‐element analysis , 2000 .
[40] Sheila A. Martin,et al. Interoperability Cost Analysis of the U.S. Automotive Supply Chain , 1999 .
[41] Les A. Piegl,et al. The NURBS Book , 1995, Monographs in Visual Communication.
[42] W. Thurston,et al. Three-Dimensional Geometry and Topology, Volume 1 , 1997, The Mathematical Gazette.
[43] Josef Hoschek,et al. Fundamentals of computer aided geometric design , 1996 .
[44] G. Farin. NURB curves and surfaces: from projective geometry to practical use , 1995 .
[45] J. Warren,et al. Subdivision methods for geometric design , 1995 .
[46] Gerald Farin,et al. Curves and surfaces for cagd , 1992 .
[47] T. Hughes,et al. Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .
[48] Thomas J. R. Hughes,et al. A mixed finite element formulation for Reissner—Mindlin plate theory: uniform convergence of all higher-order spaces , 1988 .
[49] R HughesTJ,et al. ライスナー,ミンドリン平板理論に関する混合有限要素定式化 全高次空間の一様収束 , 1988 .
[50] Wing Kam Liu,et al. Stress projection for membrane and shear locking in shell finite elements , 1985 .
[51] Ron Goldman,et al. Implicit representation of parametric curves and surfaces , 1984, Comput. Vis. Graph. Image Process..
[52] W. Thurston. Three dimensional manifolds, Kleinian groups and hyperbolic geometry , 1982 .
[53] John Stillwell,et al. Three-Dimensional Manifolds , 1980 .
[54] E. Catmull,et al. Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .
[55] D. Epstein,et al. Three-dimensional manifolds , 1960 .
[56] Magdalena Ortiz,et al. Fully C1‐conforming subdivision elements for finite deformation thin‐shell analysis , 2022 .