On sheffer symmetric functions in three-valued logic

Abstract A Sheffer function is a function which can produce by superposition all functions of a considered set. In this paper we give an exact formula for the number of n -ary Sheffer symmetric functions in three-valued logic.

[1]  Eric Foxley,et al.  The determination of all Sheffer functions in 3-valued logic, using a logical computer , 1962, Notre Dame J. Formal Log..

[2]  Barbara Lowesmith,et al.  Three-Valued Commutative Pseudo-Sheffer Functions , 1981, Math. Log. Q..

[3]  Emil L. Post Introduction to a General Theory of Elementary Propositions , 1921 .

[4]  I. G. Rosenberg,et al.  Some algebraic and combinatorial aspects of Multiple-valued circuits , 1976 .

[5]  I. Rosenberg,et al.  completeness properties of multiple-valued logic algebras , 1977 .

[6]  Ivan Stojmenovic,et al.  Sheffer and Symmetric Sheffer Boolean Functions under Various Functional Constructions , 1988, J. Inf. Process. Cybern..

[7]  J. D. Swift,et al.  Algebraic Properties of N-Valued Propositional Calculi , 1952 .

[8]  Roy O. Davies On n-Valued Sheffer Functions , 1979, Math. Log. Q..

[9]  Roger F. Wheeler,et al.  Complete Connectives for the 3‐Valued Propositional Calculus , 1966 .

[10]  Ronald L. Graham,et al.  On η-valued functionally complete truth functions , 1967, Journal of Symbolic Logic.

[11]  Edward T. Lee,et al.  On Multivalued Symmetric Functions , 1972, IEEE Transactions on Computers.

[12]  Norman M. Martin The Sheffer functions of 3-valued logic , 1954, Journal of Symbolic Logic.

[13]  D L Webb,et al.  Generation of any N-Valued Logic by One Binary Operation. , 1935, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Michael A. Harrison,et al.  Algebraic Properties of Symmetric and Partially Symmetric Boolean Functions , 1963, IEEE Trans. Electron. Comput..