Syntactic foam core metal matrix sandwich composite: Compressive properties and strain rate effects

[1]  Yongxian Huang,et al.  Fabrication and interfacial characterization of aluminum foam sandwich via fluxless soldering with surface abrasion , 2015 .

[2]  Oliver M. Strbik,et al.  Dynamic properties of alumina hollow particle filled aluminum alloy A356 matrix syntactic foams , 2015 .

[3]  J. Baumeister,et al.  Quasi-static and high strain rates compressive response of iron and Invar matrix syntactic foams , 2015 .

[4]  Oliver M. Strbik,et al.  Dynamic and Thermal Properties of Aluminum Alloy A356/Silicon Carbide Hollow Particle Syntactic Foams , 2014 .

[5]  M. Avalle,et al.  Investigation of the mechanical behaviour of AISI 316L stainless steel syntactic foams at different strain-rates , 2014 .

[6]  I. Orbulov,et al.  Compressive Properties of Metal Matrix Syntactic Foams in Free and Constrained Compression , 2014 .

[7]  M. D. Goel,et al.  Effect of strain rate and relative density on compressive deformation behavior of aluminum cenosphere syntactic foam , 2014 .

[8]  P. Rohatgi,et al.  Al–Al2O3 syntactic foams – Part I: Effect of matrix strength and hollow sphere size on the quasi-static properties of Al-A206/Al2O3 syntactic foams , 2013 .

[9]  P. Rohatgi,et al.  Predicting Mechanical Properties of Metal Matrix Syntactic Foams Reinforced with Ceramic Spheres , 2013 .

[10]  N. Gupta,et al.  Compressive properties of Al-A206/SiC and Mg-AZ91/SiC syntactic foams , 2013 .

[11]  I. Orbulov,et al.  Description of the compressive response of metal matrix syntactic foams , 2013 .

[12]  B. Pang,et al.  Dynamic compressive behavior of aluminum matrix syntactic foam and its multilayer structure , 2013 .

[13]  Oliver M. Strbik,et al.  Development of high performance lightweight aluminum alloy/SiC hollow sphere syntactic foams and compressive characterization at quasi-static and high strain rates , 2013 .

[14]  Q. Qin,et al.  Low-velocity impact response of fully clamped metal foam core sandwich beam incorporating local denting effect , 2013 .

[15]  M. D. Goel,et al.  Dynamic compression behavior of cenosphere aluminum alloy syntactic foam , 2012 .

[16]  Z. Fan,et al.  Microstructure, tensile properties and fractography of A356 alloy under as-cast and T6 obtained with expendable pattern shell casting process , 2012 .

[17]  M. Avalle,et al.  Dynamic mechanical behavior of syntactic iron foams with glass microspheres , 2012 .

[18]  I. Orbulov,et al.  Compressive characteristics of metal matrix syntactic foams , 2012 .

[19]  S. Das,et al.  Titanium-cenosphere syntactic foam made through powder metallurgy route , 2012 .

[20]  S. Das,et al.  High temperature compressive deformation behaviour of aluminum syntactic foam , 2012 .

[21]  Arun Shukla,et al.  Performance of sandwich composites subjected to sequential impact and air blast loading , 2011 .

[22]  N. Gupta,et al.  High strain rate compressive characterization of aluminum alloy/fly ash cenosphere composites , 2011 .

[23]  N. Gupta,et al.  Strain rate dependence of damage evolution in syntactic foams , 2010 .

[24]  A. Daoud Effect of fly ash addition on the structure and compressive properties of 4032–fly ash particle composite foams , 2009 .

[25]  Yuyuan Zhao,et al.  Compressive behavior of Al matrix syntactic foams toughened with Al particles , 2009 .

[26]  Yuyuan Zhao,et al.  Al matrix syntactic foam fabricated with bimodal ceramic microspheres , 2009 .

[27]  Peter D. Lee,et al.  Micro-CT characterization of structural features and deformation behavior of fly ash/aluminum syntactic foam , 2009 .

[28]  S. Das,et al.  Cenosphere filled aluminum syntactic foam made through stir-casting technique , 2009 .

[29]  A. Daoud Synthesis and characterization of novel ZnAl22 syntactic foam composites via casting , 2008 .

[30]  Qiang Zhang,et al.  High strain rate compression of cenosphere-pure aluminum syntactic foams , 2007 .

[31]  R. A. Palmer,et al.  Pressure infiltrated syntactic foams—Process development and mechanical properties , 2007 .

[32]  Ewa Magnucka-Blandzi,et al.  Effective design of a sandwich beam with a metal foam core , 2007 .

[33]  Longtao Jiang,et al.  Compression behaviors of cenosphere–pure aluminum syntactic foams , 2007 .

[34]  D. Dunand,et al.  Load partitioning in aluminum syntactic foams containing ceramic microspheres , 2006 .

[35]  Vikram Deshpande,et al.  The response of clamped sandwich plates with metallic foam cores to simulated blast loading , 2006 .

[36]  T. Meek,et al.  Refinement of eutectic silicon phase of aluminum A356 alloy using high-intensity ultrasonic vibration , 2006 .

[37]  A. Rabiei,et al.  A study on processing of a composite metal foam via casting , 2005 .

[38]  G. Gray,et al.  Plasticity and Damage in Aluminum Syntactic Foams Deformed under Dynamic and Quasi-Static Conditions , 2005 .

[39]  S. Nutt,et al.  Strain rate sensitivity and defects in steel foam , 2002 .

[40]  Qingyou Han Microstructure Prediction in A356 Alloy Castings , 2001 .

[41]  N. Gupta,et al.  Metal matrix syntactic foams : processing, microstructure, properties and applications , 2015 .

[42]  M. Busse,et al.  Quasi-static and Dynamic Mechanical Performance of Glass Microsphere- and Cenosphere-based 316L Syntactic Foams☆ , 2014 .

[43]  N. Varahram,et al.  Solidification of A356 Al alloy: Experimental study and modeling , 2011 .

[44]  D. Zenkert,et al.  Impact Properties of Corrugated Composite Sandwich Cores , 2010 .

[45]  C. Vivès Grain Refinement in Aluminum Alloys by Means of Electromagnetic Vibrations Including Cavitation Phenomena , 2005 .

[46]  J. Banhart Manufacture, characterisation and application of cellular metals and metal foams , 2001 .