Dopant induced hollow BaTiO3 nanostructures for application in high performance capacitors

In this work, large-scale single crystalline Nd-doped BaTiO3 hollow nanoparticles have been synthesized via a simple hydrothermal method without the assistance of a surfactant or high temperature sintering. With unique hollow structures, the nanoparticles not only exhibit excellent compatibility with poly(vinylidene fluoride) (PVDF), but significantly enhanced the dielectric properties of the nanocomposites. We demonstrated that the dielectric constant of the nanocomposite reached up to 480.3 with dielectric loss of 0.6 at 102 Hz. Design and optimization of the synthesis method have been achieved through a systematic study of the effect of reaction conditions on the size and morphology evolution of the hollow nanoparticles. The formation of hollow nanostructures is proposed to follow a Kirkendall induced hollowing mechanism which is governed by the differences in diffusion rates of dopant ions, water molecules and core ions during the synthesis reaction.

[1]  S. H. Wemple,et al.  Raman Spectrum of Single-Domain BaTiO3 , 1968 .

[2]  S. Banerjee,et al.  Large-scale synthesis of single-crystalline perovskite nanostructures. , 2003, Journal of the American Chemical Society.

[3]  Liang-ying Zhang,et al.  High permittivity neodymium-doped barium titanate sintered in pure nitrogen , 2004 .

[4]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[5]  Gabor A. Somorjai,et al.  Formation of Hollow Nanocrystals Through the Nanoscale Kirkendall Effect , 2004, Science.

[6]  E. Longo,et al.  Hydrothermal Microwave: A New Route to Obtain Photoluminescent Crystalline BaTiO3 Nanoparticles , 2008 .

[7]  Yoshikazu Okino,et al.  Dielectric Properties of Rare-Earth-Oxide-Doped BaTiO3 Ceramics Fired in Reducing Atmosphere , 1994 .

[8]  Xinling Wang,et al.  Surface oxidation behavior of MgNd alloys , 2007 .

[9]  N. Nuraje,et al.  Open-Bench Method for the Preparation of BaTiO3, SrTiO3, and BaxSr1-xTiO3 Nanocrystals at 80 °C , 2007 .

[10]  L. Gao,et al.  Synthesis and magnetic properties of Co-Sn-O nanorings. , 2007, Chemical communications.

[11]  A. Rüdiger,et al.  Ferroelectric hollow particles obtained by solid-state reaction , 2008, Nanotechnology.

[12]  S. Akbar,et al.  Characterization of Submicron Particles of Tetragonal BaTiO3 , 1996 .

[13]  Yawen Wang,et al.  A general approach to porous crystalline TiO2, SrTiO3, and BaTiO3 spheres. , 2006, The journal of physical chemistry. B.

[14]  Lawrence H. Robins,et al.  Investigation of the structure of barium titanate thin films by Raman spectroscopy , 1994 .

[15]  Haisheng Xu,et al.  High-dielectric-constant ceramic-powder polymer composites , 2000 .

[16]  Yongxing Shen,et al.  Dielectric behavior of three-phase percolative Ni–BaTiO3/polyvinylidene fluoride composites , 2002 .

[17]  Seong‐Hyeon Hong,et al.  Coating BaTiO3 Nanolayers on Spherical Ni Powders for Multilayer Ceramic Capacitors , 2003 .

[18]  Zhongxiang Zhou,et al.  Nearly Monodisperse Ferroelectric BaTiO3 Hollow Nanoparticles: Size-Related Solid Evacuation in Ostwald-Ripening-Induced Hollowing Process , 2010 .

[19]  M. Antonietti,et al.  A general soft-chemistry route to perovskites and related materials: synthesis of BaTiO(3), BaZrO(3), and LiNbO(3) nanoparticles. , 2004, Angewandte Chemie.

[20]  Yihe Zhang,et al.  Morphology and Dielectric Property of Homogenous BaTiO3/PVDF Nanocomposites Prepared via the Natural Adsorption Action of Nanosized BaTiO3 , 2005 .

[21]  Milind D. Arbatti,et al.  Ceramic–Polymer Composites with High Dielectric Constant , 2007 .

[22]  G. Choi,et al.  Characteristics of BaTiO3 Particles Prepared by Spray−Coprecipitation Method Using Titanium Acylate-Based Precursors , 1998 .

[23]  Hao Jiang,et al.  Hierarchical self-assembly of ultrathin nickel hydroxide nanoflakes for high-performance supercapacitors , 2011 .

[24]  Ming-Jen Pan,et al.  High energy density nanocomposites based on surface-modified BaTiO(3) and a ferroelectric polymer. , 2009, ACS nano.

[25]  Yuan Deng,et al.  Bi2S3–BaTiO3/PVDF three-phase composites with high dielectric permittivity , 2009 .

[26]  Takeshi Yamada,et al.  Piezoelectricity of a high‐content lead zirconate titanate/polymer composite , 1982 .

[27]  Sang Woo Kim,et al.  Effects of KOH/BaTi and Ba/Ti ratios on synthesis of BaTiO3 powder by coprecipitation/hydrothermal reaction , 2003 .

[28]  D. Hennings,et al.  Defect chemistry and microstructure of hydrothermal barium titanate , 2001 .

[29]  J. S. Lee,et al.  Template-free hydrothermal synthesis of single-crystalline barium titanate and strontium titanate nanowires. , 2005, Small.

[30]  Xun Wang,et al.  Rare-Earth-compound nanowires, nanotubes, and fullerene-like nanoparticles: synthesis, characterization, and properties. , 2003, Chemistry.

[31]  A. West,et al.  Doping Mechanism and Permittivity Correlations in Nd-Doped BaTiO3 , 1999 .

[32]  R. Riman,et al.  Kinetics and Mechanisms of Hydrothermal Synthesis of Barium Titanate , 1996 .

[33]  Juan Li,et al.  Template-Free and Scalable Synthesis of Core-Shell and Hollow BaTiO3 Particles: Using Molten Hydrated Salt as a Solvent , 2009 .

[34]  Kunihito Koumoto,et al.  Synthesis of BaTiO3 Nanowires at Low Temperature , 2007 .