Humbert polynomials and functions in terms of Hermite polynomials towards applications to wave propagation

By starting from the standard definitions of the incomplete two-variable Hermite polynomials, we propose non-trivial generalizations and we show some applications to the Bessel-type functions as the Humbert functions. We also present a generalization of the Laguerre polynomials in the same context of the incomplete-type and we use these to obtain relevant operational techniques for the Humbert-type functions. Final considerations are inserted to include the problem of wave propagation in the present theoretical framework.

[1]  Clemente Cesarano,et al.  A note on Generalized Bessel Functions , 2014 .

[2]  Rabia Aktas,et al.  On a multivariable extension of the Humbert polynomials , 2011, Appl. Math. Comput..

[3]  Bernardino Chiaia,et al.  Robustness-oriented design of a panel-based shelter system in critical sites , 2012 .

[4]  Francesco dell’Isola,et al.  Variational formulation of pre-stressed solid-fluid mixture theory, with an application to wave phenomena , 2008 .

[5]  Francesco dell’Isola,et al.  Linear plane wave propagation and normal transmission and reflection at discontinuity surfaces in second gradient 3D continua , 2012 .

[6]  Giuseppe Dattoli,et al.  Theory and applications of generalized Bessel functions , 1996 .

[7]  C. Cesarano,et al.  On a new family of Hermite polynomials associated to parabolic cylinder functions , 2003, Appl. Math. Comput..

[8]  G. Maugin,et al.  Wave motions in unbounded poroelastic solids infused with compressible fluids , 2002 .

[9]  C. Cesarano,et al.  Laguerre-type bessel functions , 2005 .

[11]  Preconditioning for solving Hermite Collocation by the Bi-CGSTAB , 2006 .

[12]  H. W. Gould,et al.  Operational formulas connected with two generalizations of Hermite polynomials , 1962 .

[13]  V. Man'ko,et al.  New relations for two-dimensional Hermite polynomials , 1993, hep-th/9312012.

[14]  G. Dattoli Incomplete 2D Hermite polynomials: properties and applications , 2003 .

[15]  P. Appell,et al.  Fonctions hypergéométriques et hypersphériques : polynomes d'Hermite , 1926 .

[16]  P. E. Ricci,et al.  On a family of hybrid polynomials , 2004 .

[17]  T. Vashakmadze Dynamical mathematical models for plates and numerical solution of boundary value and Cauchy problems for ordinary differential equations , 2009 .

[18]  C. Cesarano,et al.  Bernstein polynomials and operational methods , 2006 .

[19]  Ugo Andreaus,et al.  Soft-impact dynamics of deformable bodies , 2013 .

[20]  Hari M. Srivastava,et al.  The Laguerre and Legendre polynomials from an operational point of view , 2001, Appl. Math. Comput..