On arrangements of Jordan arcs with three intersections per pair
暂无分享,去创建一个
Leonidas J. Guibas | Micha Sharir | Raimund Seidel | János Pach | John Hershberger | Herbert Edelsbrunner | Jack Snoeyink | Richard Pollack | M. Sharir | R. Pollack | J. Pach | H. Edelsbrunner | L. Guibas | R. Seidel | J. Hershberger | J. Snoeyink
[1] Leonidas J. Guibas,et al. On the general motion-planning problem with two degrees of freedom , 2015, SCG '88.
[2] George S. Springer,et al. Introduction to Riemann Surfaces , 1959 .
[3] Herbert Edelsbrunner,et al. Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.
[4] Micha Sharir,et al. Planar realizations of nonlinear davenport-schinzel sequences by segments , 1988, Discret. Comput. Geom..
[5] Micha Sharir,et al. On the union of Jordan regions and collision-free translational motion amidst polygonal obstacles , 1986, Discret. Comput. Geom..
[6] Micha Sharir,et al. Almost linear upper bounds on the length of general davenport—schinzel sequences , 1987, Comb..
[7] William S. Massey,et al. Algebraic Topology: An Introduction , 1977 .
[8] R. Ho. Algebraic Topology , 2022 .
[9] M. Atallah. Some dynamic computational geometry problems , 1985 .
[10] Micha Sharir,et al. Nonlinearity of davenport—Schinzel sequences and of generalized path compression schemes , 1986, FOCS.
[11] Micha Sharir,et al. Separating two simple polygons by a sequence of translations , 2015, Discret. Comput. Geom..