Direct immersogeometric fluid flow analysis using B-rep CAD models

Immersogeometric analysis that directly uses the B-rep CAD model is proposed.A GPU-accelerated point membership classification is performed.Distribution of the surface quadrature points is crucial for accuracy.The quadrature error near the trim curves is relatively insignificant.The methodology is found effective on a 3D benchmark and an industrial problem. We present a new method for immersogeometric fluid flow analysis that directly uses the CAD boundary representation (B-rep) of a complex object and immerses it into a locally refined, non-boundary-fitted discretization of the fluid domain. The motivating applications include analyzing the flow over complex geometries, such as moving vehicles, where the detailed geometric features usually require time-consuming, labor-intensive geometry cleanup or mesh manipulation for generating the surrounding boundary-fitted fluid mesh. The proposed method avoids the challenges associated with such procedures. A new method to perform point membership classification of the background mesh quadrature points is also proposed. To faithfully capture the geometry in intersected elements, we implement an adaptive quadrature rule based on the recursive splitting of elements. Dirichlet boundary conditions in intersected elements are enforced weakly in the sense of Nitsche's method. To assess the accuracy of the proposed method, we perform computations of the benchmark problem of flow over a sphere represented using B-rep. Quantities of interest such as drag coefficient are in good agreement with reference values reported in the literature. The results show that the density and distribution of the surface quadrature points are crucial for the weak enforcement of Dirichlet boundary conditions and for obtaining accurate flow solutions. Also, with sufficient levels of surface quadrature element refinement, the quadrature error near the trim curves becomes insignificant. Finally, we demonstrate the effectiveness of our immersogeometric method for high-fidelity industrial scale simulations by performing an aerodynamic analysis of an agricultural tractor directly represented using B-rep.

[1]  Adarsh Krishnamurthy,et al.  Optimized GPU evaluation of arbitrary degree NURBS curves and surfaces , 2009, Comput. Aided Des..

[2]  Κωνσταντίνος Κώστας,et al.  Ship-hull shape optimization with a T-spline based BEM-isogeometric solver , 2015 .

[3]  John A. Evans,et al.  Isogeometric finite element data structures based on Bézier extraction of NURBS , 2011 .

[4]  Yuri Bazilevs,et al.  High-performance computing of wind turbine aerodynamics using isogeometric analysis , 2011 .

[5]  T. Hughes,et al.  Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .

[6]  Thomas J. R. Hughes,et al.  Fluid–structure interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation , 2014, Computational Mechanics.

[7]  T. Hughes,et al.  Efficient quadrature for NURBS-based isogeometric analysis , 2010 .

[8]  Ernst Rank,et al.  Geometric modeling, isogeometric analysis and the finite cell method , 2012 .

[9]  T. Hughes,et al.  Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes , 2010 .

[10]  Yuri Bazilevs,et al.  Operator- and template-based modeling of solid geometry for Isogeometric Analysis with application to Vertical Axis Wind Turbine simulation , 2012 .

[11]  Roland Wüchner,et al.  Isogeometric analysis of trimmed NURBS geometries , 2012 .

[12]  Victor M. Calo,et al.  The role of continuity in residual-based variational multiscale modeling of turbulence , 2007 .

[13]  John A. Evans,et al.  Isogeometric boundary element analysis using unstructured T-splines , 2013 .

[14]  Hamid Ghazialam,et al.  Surface mesh generation for dirty geometries by the Cartesian shrink-wrapping technique , 2010, Engineering with Computers.

[15]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[16]  Peter Wriggers,et al.  A large deformation frictional contact formulation using NURBS‐based isogeometric analysis , 2011 .

[17]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[18]  A. Peirce Computer Methods in Applied Mechanics and Engineering , 2010 .

[19]  Thomas J. R. Hughes,et al.  Multiscale and Stabilized Methods , 2007 .

[20]  Y. Bazilevs,et al.  Small and large deformation analysis with the p- and B-spline versions of the Finite Cell Method , 2012 .

[21]  Thomas J. R. Hughes,et al.  The multiscale formulation of large eddy simulation: Decay of homogeneous isotropic turbulence , 2001 .

[22]  Brummelen van Eh,et al.  Flux evaluation in primal and dual boundary-coupled problems , 2011 .

[23]  Joe Walsh,et al.  A comparison of techniques for geometry access related to mesh generation , 2004, Engineering with Computers.

[24]  Thomas J. R. Hughes,et al.  Patient-Specific Vascular NURBS Modeling for Isogeometric Analysis of Blood Flow , 2007, IMR.

[25]  Jintai Chung,et al.  A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method , 1993 .

[26]  R. Schmidt,et al.  Isogeometric shape optimization of shells using semi-analytical sensitivity analysis and sensitivity weighting , 2014 .

[27]  Thomas J. R. Hughes,et al.  Volumetric T-spline construction using Boolean operations , 2014, Engineering with Computers.

[28]  Ernst Rank,et al.  The finite cell method for three-dimensional problems of solid mechanics , 2008 .

[29]  T. Hughes,et al.  ISOGEOMETRIC COLLOCATION METHODS , 2010 .

[30]  T. Hughes,et al.  Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows , 2007 .

[31]  Roland Wüchner,et al.  Analysis in computer aided design: Nonlinear isogeometric B-Rep analysis of shell structures , 2015 .

[32]  John A. Evans,et al.  An Isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces , 2012 .

[33]  A.A.G. Requicha,et al.  Boolean operations in solid modeling: Boundary evaluation and merging algorithms , 1985, Proceedings of the IEEE.

[34]  Jarek Rossignac,et al.  Solid modeling , 1994, IEEE Computer Graphics and Applications.

[35]  Alessandro Reali,et al.  Isogeometric collocation: Cost comparison with Galerkin methods and extension to adaptive hierarchical NURBS discretizations , 2013 .

[36]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[37]  T. Hughes,et al.  A multi-element group preconditioned GMRES algorithm for nonsymmetric systems arising in finite element analysis , 1989 .

[38]  Tayfun E. Tezduyar,et al.  Finite element stabilization parameters computed from element matrices and vectors , 2000 .

[39]  Yuri Bazilevs,et al.  Dynamic and fluid–structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models , 2015, Computational mechanics.

[40]  Thomas J. R. Hughes,et al.  Isogeometric shell analysis: The Reissner-Mindlin shell , 2010 .

[41]  Ernst Rank,et al.  Finite cell method , 2007 .

[42]  Martin Ruess,et al.  Nitsche’s method for a coupling of isogeometric thin shells and blended shell structures , 2015 .

[43]  T. Hughes,et al.  Large Eddy Simulation and the variational multiscale method , 2000 .

[44]  Ming-Chen Hsu,et al.  The tetrahedral finite cell method: Higher‐order immersogeometric analysis on adaptive non‐boundary‐fitted meshes , 2016 .

[45]  Alessandro Reali,et al.  Isogeometric Analysis of Structural Vibrations , 2006 .

[46]  T. Rabczuk,et al.  A two-dimensional Isogeometric Boundary Element Method for elastostatic analysis , 2012 .

[47]  Thomas J. R. Hughes,et al.  A higher-order phase-field model for brittle fracture: Formulation and analysis within the isogeometric analysis framework , 2014 .

[48]  Victor M. Calo,et al.  Improving stability of stabilized and multiscale formulations in flow simulations at small time steps , 2010 .

[49]  Alessandro Reali,et al.  An isogeometric collocation approach for Bernoulli–Euler beams and Kirchhoff plates , 2015 .

[50]  Roland Wüchner,et al.  Isogeometric shell analysis with Kirchhoff–Love elements , 2009 .

[51]  Tayfan E. Tezduyar,et al.  Stabilized Finite Element Formulations for Incompressible Flow Computations , 1991 .

[52]  Yuri Bazilevs,et al.  Wind turbine aerodynamics using ALE–VMS: validation and the role of weakly enforced boundary conditions , 2012 .

[53]  Thomas J. R. Hughes,et al.  Isogeometric divergence-conforming B-splines for the unsteady Navier-Stokes equations , 2013, J. Comput. Phys..

[54]  Alessandro Reali,et al.  Studies of Refinement and Continuity in Isogeometric Structural Analysis (Preprint) , 2007 .

[55]  Thomas J. R. Hughes,et al.  Conformal solid T-spline construction from boundary T-spline representations , 2013 .

[56]  Thomas J. R. Hughes,et al.  Weak imposition of Dirichlet boundary conditions in fluid mechanics , 2007 .

[57]  Peter Wriggers,et al.  Three-dimensional mortar-based frictional contact treatment in isogeometric analysis with NURBS , 2012 .

[58]  Zhi J. Wang,et al.  An adaptive Cartesian grid generation method for ‘Dirty’ geometry , 2002 .

[59]  T. Hughes,et al.  Local refinement of analysis-suitable T-splines , 2012 .

[60]  Yuri Bazilevs,et al.  An immersogeometric variational framework for fluid-structure interaction: application to bioprosthetic heart valves. , 2015, Computer methods in applied mechanics and engineering.

[61]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[62]  Dominik Schillinger,et al.  The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models , 2015 .

[63]  Ming-Chen Hsu,et al.  The tetrahedral finite cell method for fluids: Immersogeometric analysis of turbulent flow around complex geometries , 2016 .

[64]  Vipin Kumar,et al.  A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..

[65]  Victor M. Calo,et al.  Weak Dirichlet Boundary Conditions for Wall-Bounded Turbulent Flows , 2007 .

[66]  Yuri Bazilevs,et al.  Isogeometric fluid–structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines , 2012 .

[67]  Ju Liu,et al.  Functional entropy variables: A new methodology for deriving thermodynamically consistent algorithms for complex fluids, with particular reference to the isothermal Navier-Stokes-Korteweg equations , 2013, J. Comput. Phys..

[68]  Adarsh Krishnamurthy,et al.  GPU-Accelerated Minimum Distance and Clearance Queries , 2011, IEEE Transactions on Visualization and Computer Graphics.

[69]  Thomas J. R. Hughes,et al.  Trivariate solid T-spline construction from boundary triangulations with arbitrary genus topology , 2012, Comput. Aided Des..

[70]  David L. Marcum,et al.  Unstructured Grid Generation for Aerospace Applications , 2000 .

[71]  Xin Li,et al.  Analysis-suitable T-splines: characterization, refineability, and approximation , 2012, ArXiv.

[72]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[73]  T. Hughes,et al.  Isogeometric analysis of the Cahn–Hilliard phase-field model , 2008 .

[74]  T. Hughes,et al.  A Simple Algorithm for Obtaining Nearly Optimal Quadrature Rules for NURBS-based Isogeometric Analysis , 2012 .

[75]  I. Akkerman,et al.  Large eddy simulation of turbulent Taylor-Couette flow using isogeometric analysis and the residual-based variational multiscale method , 2010, J. Comput. Phys..

[76]  I. Akkerman,et al.  Isogeometric analysis of free-surface flow , 2011, J. Comput. Phys..

[77]  Ernst Rank,et al.  Weak coupling for isogeometric analysis of non-matching and trimmed multi-patch geometries , 2014 .

[78]  T. Belytschko,et al.  A generalized finite element formulation for arbitrary basis functions: From isogeometric analysis to XFEM , 2010 .

[79]  Thomas J. R. Hughes,et al.  Reduced Bézier element quadrature rules for quadratic and cubic splines in isogeometric analysis , 2014 .

[80]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[81]  Saeed Shojaee,et al.  NURBS-based isogeometric analysis for thin plate problems , 2012 .

[82]  G. Hulbert,et al.  A generalized-α method for integrating the filtered Navier–Stokes equations with a stabilized finite element method , 2000 .

[83]  Anindya Ghoshal,et al.  An interactive geometry modeling and parametric design platform for isogeometric analysis , 2015, Comput. Math. Appl..

[84]  Thomas J. R. Hughes,et al.  Isogeometric Analysis for Topology Optimization with a Phase Field Model , 2012 .