Estimation of the hemodynamic response in event-related functional MRI: Bayesian networks as a framework for efficient Bayesian modeling and inference

A convenient way to analyze blood-oxygen-level-dependent functional magnetic resonance imaging data consists of modeling the whole brain as a stationary, linear system characterized by its transfer function: the hemodynamic response function (HRF). HRF estimation, though of the greatest interest, is still under investigation, for the problem is ill-conditioned. In this paper, we recall the most general Bayesian model for HRF estimation and show how it can beneficially be translated in terms of Bayesian graphical models, leading to 1) a clear and efficient representation of all structural and functional relationships entailed by the model, and 2) a straightforward numerical scheme to approximate the joint posterior distribution, allowing for estimation of the HRF, as well as all other model parameters. We finally apply this novel technique on both simulations and real data.

[1]  Habib Benali,et al.  Estimation of the Hemodynamic Response Function in Event-Related Functional MRI: Directed Acyclic Graphs for a General Bayesian Inference Framework , 2003, IPMI.

[2]  Gary H. Glover,et al.  Assessment of Hemodynamic Response during Focal Neural Activity in Human Using Bolus Tracking, Arterial Spin Labeling and BOLD Techniques , 2000, NeuroImage.

[3]  Alexis Roche,et al.  Outlier detection for robust region-based estimation of the hemodynamic response function in event-related fMRI , 2004, 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821).

[4]  Judea Pearl,et al.  Evidential Reasoning Using Stochastic Simulation of Causal Models , 1987, Artif. Intell..

[5]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[6]  Jean-Baptiste Poline,et al.  Estimation régularisée et non supervisée de la réponse hémodynamique en imagerie cérébrale fonctionnelle (IRMf) , 2003 .

[7]  Uffe Kjærulff,et al.  Blocking Gibbs sampling in very large probabilistic expert systems , 1995, Int. J. Hum. Comput. Stud..

[8]  Lars Kai Hansen,et al.  Modeling the hemodynamic response in fMRI using smooth FIR filters , 2000, IEEE Transactions on Medical Imaging.

[9]  Iwao Kanno,et al.  A Bayesian approach to estimating the haemodynamic response function in event-related fMRI , 2000, NeuroImage.

[10]  Jean-Baptiste Poline,et al.  Bayesian estimation of the hemodynamic response function in functional MRI , 2002 .

[11]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[12]  C Gössl,et al.  Bayesian Spatiotemporal Inference in Functional Magnetic Resonance Imaging , 2001, Biometrics.

[13]  M. D’Esposito,et al.  Alterations in the BOLD fMRI signal with ageing and disease: a challenge for neuroimaging , 2003, Nature Reviews Neuroscience.

[14]  Jean-Baptiste Poline,et al.  Unsupervised robust nonparametric estimation of the hemodynamic response function for any fMRI experiment , 2003, IEEE Transactions on Medical Imaging.

[15]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[16]  Karl J. Friston,et al.  Analysis of functional MRI time‐series , 1994, Human Brain Mapping.

[17]  J. Pearl Causality: Models, Reasoning and Inference , 2000 .

[18]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[19]  Joseph G. Ibrahim,et al.  Monte Carlo Methods in Bayesian Computation , 2000 .

[20]  W. Chen,et al.  Principles of BOLD Functional MRI , 2000 .

[21]  Jean-Baptiste Poline,et al.  Robust estimation of the hemodynamic response function in asynchronous multitasks multisessions event-related fMRI paradigms , 2002, Proceedings IEEE International Symposium on Biomedical Imaging.

[22]  Habib Benali,et al.  A model of the coupling between brain electrical activity and metabolism: application to the interpretation of functional brain imaging , 2001, NeuroImage.

[23]  H. Benali,et al.  Robust Bayesian estimation of the hemodynamic response function in event‐related BOLD fMRI using basic physiological information , 2003, Human brain mapping.

[24]  D. Schacter,et al.  Functional–Anatomic Study of Episodic Retrieval Using fMRI I. Retrieval Effort versus Retrieval Success , 1998, NeuroImage.

[25]  A M Dale,et al.  Estimation and detection of event‐related fMRI signals with temporally correlated noise: A statistically efficient and unbiased approach , 2000, Human brain mapping.

[26]  L. Fahrmeir,et al.  Bayesian Modeling of the Hemodynamic Response Function in BOLD fMRI , 2001, NeuroImage.

[27]  M. D’Esposito,et al.  The variability of human BOLD hemodynamic responses , 1998, NeuroImage.

[28]  M. D’Esposito,et al.  The Effect of Normal Aging on the Coupling of Neural Activity to the Bold Hemodynamic Response , 1999, NeuroImage.

[29]  L. Toth,et al.  How accurate is magnetic resonance imaging of brain function? , 2003, Trends in Neurosciences.

[30]  R. Buckner,et al.  Human Brain Mapping 6:373–377(1998) � Event-Related fMRI and the Hemodynamic Response , 2022 .

[31]  M. D’Esposito,et al.  The Variability of Human, BOLD Hemodynamic Responses , 1998, NeuroImage.

[32]  A. Dale,et al.  Selective averaging of rapidly presented individual trials using fMRI , 1997, Human brain mapping.

[33]  A. Dale,et al.  Functional–Anatomic Study of Episodic Retrieval II. Selective Averaging of Event-Related fMRI Trials to Test the Retrieval Success Hypothesis , 1998, NeuroImage.

[34]  H. Benali,et al.  Automated rejection sampling from product of distributions , 2004, Comput. Stat..

[35]  Christopher R. Genovese,et al.  A Bayesian Time-Course Model for Functional Magnetic Resonance Imaging Data , 2000 .

[36]  Robert Costalat,et al.  A Model of the Coupling between Brain Electrical Activity, Metabolism, and Hemodynamics: Application to the Interpretation of Functional Neuroimaging , 2002, NeuroImage.