High Efficiency Quantum Dot Heterojunction Solar Cell Using Anatase (001) TiO2 Nanosheets
暂无分享,去创建一个
Wei Zhang | L. Etgar | B. Liu | M. Grätzel | A. Eychmüller | Md. K. Nazeeruddin | S. Hickey | S. Gabriel
[1] Ghada I. Koleilat,et al. Electron Acceptor Materials Engineering in Colloidal Quantum Dot Solar Cells , 2011, Advanced materials.
[2] Edward H. Sargent,et al. Tandem colloidal quantum dot solar cells employing a graded recombination layer , 2011 .
[3] Ratan Debnath,et al. Depleted Bulk Heterojunction Colloidal Quantum Dot Photovoltaics , 2011, Advanced materials.
[4] Jianbo Gao,et al. n-Type transition metal oxide as a hole extraction layer in PbS quantum dot solar cells. , 2011, Nano letters.
[5] Jianbo Gao,et al. Quantum dot size dependent J-V characteristics in heterojunction ZnO/PbS quantum dot solar cells. , 2011, Nano letters.
[6] Feng Liu,et al. Metastable Phase in Undercooled Fe-Co Alloy , 2011 .
[7] B. Parkinson,et al. Multiple Exciton Collection in a Sensitized Photovoltaic System , 2010, Science.
[8] Jianbo Gao,et al. Stability Assessment on a 3% Bilayer PbS/ZnO Quantum Dot Heterojunction Solar Cell , 2010, Advanced materials.
[9] Ratan Debnath,et al. Depleted-heterojunction colloidal quantum dot solar cells. , 2010, ACS nano.
[10] Lukasz Brzozowski,et al. Ambient-processed colloidal quantum dot solar cells via individual pre-encapsulation of nanoparticles. , 2010, Journal of the American Chemical Society.
[11] E. Aydil,et al. Solar cells based on junctions between colloidal PbSe nanocrystals and thin ZnO films. , 2009, ACS nano.
[12] A Paul Alivisatos,et al. Photovoltaic devices employing ternary PbSxSe1-x nanocrystals. , 2009, Nano letters.
[13] Zhaoxiong Xie,et al. Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. , 2009, Journal of the American Chemical Society.
[14] Victor I Klimov,et al. Hybrid photovoltaics based on semiconductor nanocrystals and amorphous silicon. , 2009, Nano letters.
[15] Byung-Ryool Hyun,et al. Electron injection from colloidal PbS quantum dots into titanium dioxide nanoparticles. , 2008, ACS nano.
[16] Matt Law,et al. Schottky solar cells based on colloidal nanocrystal films. , 2008, Nano letters.
[17] T. Krauss,et al. Ultrabright PbSe magic-sized clusters. , 2008, Nano letters.
[18] Jin Zou,et al. Anatase TiO2 single crystals with a large percentage of reactive facets , 2008, Nature.
[19] M. Kovalenko,et al. Quasi-seeded growth of ligand-tailored PbSe nanocrystals through cation-exchange-mediated nucleation. , 2008, Angewandte Chemie.
[20] Matt Law,et al. Structural, optical, and electrical properties of self-assembled films of PbSe nanocrystals treated with 1,2-ethanedithiol. , 2008, ACS nano.
[21] Wje Waldo Beek,et al. Hybrid Solar Cells from Regioregular Polythiophene and ZnO Nanoparticles , 2006 .
[22] G. Konstantatos,et al. Enhanced infrared photovoltaic efficiency in PbS nanocrystal/semiconducting polymer composites: 600-fold increase in maximum power output via control of the ligand barrier , 2005 .
[23] A Paul Alivisatos,et al. Air-Stable All-Inorganic Nanocrystal Solar Cells Processed from Solution , 2005, Science.
[24] R. Schaller,et al. High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion. , 2004, Physical review letters.
[25] Gregory D. Scholes,et al. Colloidal PbS Nanocrystals with Size‐Tunable Near‐Infrared Emission: Observation of Post‐Synthesis Self‐Narrowing of the Particle Size Distribution , 2003 .
[26] Udo Bach,et al. Quantum dot sensitization of organic-inorganic hybrid solar cells , 2002 .
[27] A. Alivisatos,et al. Hybrid Nanorod-Polymer Solar Cells , 2002, Science.
[28] F. Wise,et al. Lead salt quantum dots: the limit of strong quantum confinement. , 2000, Accounts of chemical research.
[29] Ladislav Kavan,et al. ELECTROCHEMICAL AND PHOTOELECTROCHEMICAL INVESTIGATION OF SINGLE-CRYSTAL ANATASE , 1996 .