High Efficiency Quantum Dot Heterojunction Solar Cell Using Anatase (001) TiO2 Nanosheets

This is the first report of using anatase TiO(2) nanosheets with exposed (001) facets in a high-efficiency PbS quantum dot/TiO(2) heterojunction solar cell. The TiO(2) nanosheets have higher conduction band, and surface energy compared to normal anatase (101) TiO(2) nanoparticles. This PbS QD/TiO(2) heterojunction solar cell produces power conversion efficiency of 4.7% which is one of the highest reported in literature.

[1]  Ghada I. Koleilat,et al.  Electron Acceptor Materials Engineering in Colloidal Quantum Dot Solar Cells , 2011, Advanced materials.

[2]  Edward H. Sargent,et al.  Tandem colloidal quantum dot solar cells employing a graded recombination layer , 2011 .

[3]  Ratan Debnath,et al.  Depleted Bulk Heterojunction Colloidal Quantum Dot Photovoltaics , 2011, Advanced materials.

[4]  Jianbo Gao,et al.  n-Type transition metal oxide as a hole extraction layer in PbS quantum dot solar cells. , 2011, Nano letters.

[5]  Jianbo Gao,et al.  Quantum dot size dependent J-V characteristics in heterojunction ZnO/PbS quantum dot solar cells. , 2011, Nano letters.

[6]  Feng Liu,et al.  Metastable Phase in Undercooled Fe-Co Alloy , 2011 .

[7]  B. Parkinson,et al.  Multiple Exciton Collection in a Sensitized Photovoltaic System , 2010, Science.

[8]  Jianbo Gao,et al.  Stability Assessment on a 3% Bilayer PbS/ZnO Quantum Dot Heterojunction Solar Cell , 2010, Advanced materials.

[9]  Ratan Debnath,et al.  Depleted-heterojunction colloidal quantum dot solar cells. , 2010, ACS nano.

[10]  Lukasz Brzozowski,et al.  Ambient-processed colloidal quantum dot solar cells via individual pre-encapsulation of nanoparticles. , 2010, Journal of the American Chemical Society.

[11]  E. Aydil,et al.  Solar cells based on junctions between colloidal PbSe nanocrystals and thin ZnO films. , 2009, ACS nano.

[12]  A Paul Alivisatos,et al.  Photovoltaic devices employing ternary PbSxSe1-x nanocrystals. , 2009, Nano letters.

[13]  Zhaoxiong Xie,et al.  Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. , 2009, Journal of the American Chemical Society.

[14]  Victor I Klimov,et al.  Hybrid photovoltaics based on semiconductor nanocrystals and amorphous silicon. , 2009, Nano letters.

[15]  Byung-Ryool Hyun,et al.  Electron injection from colloidal PbS quantum dots into titanium dioxide nanoparticles. , 2008, ACS nano.

[16]  Matt Law,et al.  Schottky solar cells based on colloidal nanocrystal films. , 2008, Nano letters.

[17]  T. Krauss,et al.  Ultrabright PbSe magic-sized clusters. , 2008, Nano letters.

[18]  Jin Zou,et al.  Anatase TiO2 single crystals with a large percentage of reactive facets , 2008, Nature.

[19]  M. Kovalenko,et al.  Quasi-seeded growth of ligand-tailored PbSe nanocrystals through cation-exchange-mediated nucleation. , 2008, Angewandte Chemie.

[20]  Matt Law,et al.  Structural, optical, and electrical properties of self-assembled films of PbSe nanocrystals treated with 1,2-ethanedithiol. , 2008, ACS nano.

[21]  Wje Waldo Beek,et al.  Hybrid Solar Cells from Regioregular Polythiophene and ZnO Nanoparticles , 2006 .

[22]  G. Konstantatos,et al.  Enhanced infrared photovoltaic efficiency in PbS nanocrystal/semiconducting polymer composites: 600-fold increase in maximum power output via control of the ligand barrier , 2005 .

[23]  A Paul Alivisatos,et al.  Air-Stable All-Inorganic Nanocrystal Solar Cells Processed from Solution , 2005, Science.

[24]  R. Schaller,et al.  High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion. , 2004, Physical review letters.

[25]  Gregory D. Scholes,et al.  Colloidal PbS Nanocrystals with Size‐Tunable Near‐Infrared Emission: Observation of Post‐Synthesis Self‐Narrowing of the Particle Size Distribution , 2003 .

[26]  Udo Bach,et al.  Quantum dot sensitization of organic-inorganic hybrid solar cells , 2002 .

[27]  A. Alivisatos,et al.  Hybrid Nanorod-Polymer Solar Cells , 2002, Science.

[28]  F. Wise,et al.  Lead salt quantum dots: the limit of strong quantum confinement. , 2000, Accounts of chemical research.

[29]  Ladislav Kavan,et al.  ELECTROCHEMICAL AND PHOTOELECTROCHEMICAL INVESTIGATION OF SINGLE-CRYSTAL ANATASE , 1996 .