On ellipse intersection and union with application to anisotropic mesh adaptation

This paper presents ellipses as a convenient mean of representation for operating on several tensor fields. The first part of this paper discusses the representation of tensors as ellipses or ellipsoids. Two binary operators are defined inside the set of centred ellipses, intersection, and union, and their properties are studied. The second part of this paper presents an application of these operators to binary operations on metric tensor fields for the purpose of anisotropic mesh adaptation.

[1]  Pascal Frey,et al.  MEDIT : An interactive Mesh visualization Software , 2001 .

[2]  Leonid Khachiyan,et al.  Rounding of Polytopes in the Real Number Model of Computation , 1996, Math. Oper. Res..

[3]  François Guibault,et al.  Verification of three‐dimensional anisotropic adaptive processes , 2011 .

[4]  N. Moshtagh MINIMUM VOLUME ENCLOSING ELLIPSOIDS , 2005 .

[5]  François Guibault,et al.  A universal measure of the conformity of a mesh with respect to an anisotropic metric field , 2004 .

[6]  A. Vacavant,et al.  Reconstructions of Noisy Digital Contours with Maximal Primitives Based on Multi-Scale/Irregular Geometric Representation and Generalized Linear Programming , 2017 .

[7]  Paul-Louis George,et al.  3D transient fixed point mesh adaptation for time-dependent problems: Application to CFD simulations , 2007, J. Comput. Phys..

[8]  C. K. Lee Automatic Adaptive Mesh Generation Using Metric Advancing Front Approach , 2018 .

[9]  Peng Sun,et al.  Computation of Minimum Volume Covering Ellipsoids , 2002, Oper. Res..

[10]  Houman Borouchaki,et al.  Metric tensor recovery for adaptive meshing , 2017, Math. Comput. Simul..

[11]  Sachin Jambawalikar,et al.  A Note on Approximate Minimum Volume Enclosing Ellipsoid of Ellipsoids , 2008, 2008 International Conference on Computational Sciences and Its Applications.

[12]  Bernd Gärtner,et al.  Smallest enclosing ellipses , 1998 .

[13]  Yvan Mokwinski,et al.  Adaptation de maillage pour les problèmes à surfaces libres en mécanique des fluides , 2012 .

[14]  Piyush Kumar,et al.  Minimum-Volume Enclosing Ellipsoids and Core Sets , 2005 .

[15]  Frédéric Hecht,et al.  Anisotropic unstructured mesh adaption for flow simulations , 1997 .

[16]  Emo Welzl,et al.  Smallest enclosing disks (balls and ellipsoids) , 1991, New Results and New Trends in Computer Science.

[17]  P. George,et al.  Delaunay mesh generation governed by metric specifications. Part I algorithms , 1997 .

[18]  Charles L. Merkle,et al.  Grid adaptation on unstructured meshes , 2001 .

[19]  Paul-Louis George,et al.  Delaunay triangulation and meshing : application to finite elements , 1998 .

[20]  C.R.E. de Oliveira,et al.  Tetrahedral mesh optimisation and adaptivity for steady-state and transient finite element calculations , 2001 .

[21]  P. George,et al.  Mesh Generation: Application to Finite Elements , 2007 .

[22]  Charles L. Merkle,et al.  Anisotropic Grid Adaptation on Unstructured Meshes , 2001 .

[23]  Frédéric Alauzet,et al.  Adaptation de maillage anisotrope en trois dimensions : applications aux simulations instationnaires en mécanique des fluides , 2003 .

[24]  Peter A. Cavallo,et al.  Correlation of Grid and Solution Pairs Using Metric Tensor Intersections , 2013 .