Understanding phylogenetic incongruence: lessons from phyllostomid bats

All characters and trait systems in an organism share a common evolutionary history that can be estimated using phylogenetic methods. However, differential rates of change and the evolutionary mechanisms driving those rates result in pervasive phylogenetic conflict. These drivers need to be uncovered because mismatches between evolutionary processes and phylogenetic models can lead to high confidence in incorrect hypotheses. Incongruence between phylogenies derived from morphological versus molecular analyses, and between trees based on different subsets of molecular sequences has become pervasive as datasets have expanded rapidly in both characters and species. For more than a decade, evolutionary relationships among members of the New World bat family Phyllostomidae inferred from morphological and molecular data have been in conflict. Here, we develop and apply methods to minimize systematic biases, uncover the biological mechanisms underlying phylogenetic conflict, and outline data requirements for future phylogenomic and morphological data collection. We introduce new morphological data for phyllostomids and outgroups and expand previous molecular analyses to eliminate methodological sources of phylogenetic conflict such as taxonomic sampling, sparse character sampling, or use of different algorithms to estimate the phylogeny. We also evaluate the impact of biological sources of conflict: saturation in morphological changes and molecular substitutions, and other processes that result in incongruent trees, including convergent morphological and molecular evolution. Methodological sources of incongruence play some role in generating phylogenetic conflict, and are relatively easy to eliminate by matching taxa, collecting more characters, and applying the same algorithms to optimize phylogeny. The evolutionary patterns uncovered are consistent with multiple biological sources of conflict, including saturation in morphological and molecular changes, adaptive morphological convergence among nectar‐feeding lineages, and incongruent gene trees. Applying methods to account for nucleotide sequence saturation reduces, but does not completely eliminate, phylogenetic conflict. We ruled out paralogy, lateral gene transfer, and poor taxon sampling and outgroup choices among the processes leading to incongruent gene trees in phyllostomid bats. Uncovering and countering the possible effects of introgression and lineage sorting of ancestral polymorphism on gene trees will require great leaps in genomic and allelic sequencing in this species‐rich mammalian family. We also found evidence for adaptive molecular evolution leading to convergence in mitochondrial proteins among nectar‐feeding lineages. In conclusion, the biological processes that generate phylogenetic conflict are ubiquitous, and overcoming incongruence requires better models and more data than have been collected even in well‐studied organisms such as phyllostomid bats.

[1]  Hervé Philippe,et al.  Lack of resolution in the animal phylogeny: closely spaced cladogeneses or undetected systematic errors? , 2007, Molecular biology and evolution.

[2]  M. Sanderson,et al.  Error, bias, and long-branch attraction in data for two chloroplast photosystem genes in seed plants. , 2000, Molecular biology and evolution.

[3]  K. Reiss Using Phylogenies to Study Convergence: The Case of the Ant-Eating Mammals1 , 2001 .

[4]  Patricia W. Freeman Nectarivorous feeding mechanisms in bats , 1995 .

[5]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[6]  R. Baker,et al.  Systematics of the genera Carollia and Rhinophylla based on the cytochrome-B gene , 1999 .

[7]  D. Schatz,et al.  RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination. , 1990, Science.

[8]  Gang Li,et al.  Accelerated FoxP2 Evolution in Echolocating Bats , 2007, PloS one.

[9]  David M. Hillis,et al.  Faculty Opinions recommendation of From gene trees to organismal phylogeny in prokaryotes: the case of the gamma-Proteobacteria. , 2003 .

[10]  S. O’Brien,et al.  A Molecular Phylogeny for Bats Illuminates Biogeography and the Fossil Record , 2005, Science.

[11]  D. Maddison,et al.  MacClade 4: analysis of phy-logeny and character evolution , 2003 .

[12]  N. Sinha,et al.  Keeping it simple: flowering plants tend to retain, and revert to, simple leaves. , 2012, The New phytologist.

[13]  M. Stanhope,et al.  The evolution of armadillos, anteaters and sloths depicted by nuclear and mitochondrial phylogenies: implications for the status of the enigmatic fossil Eurotamandua , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[14]  D. Wake Homoplasy: The Result of Natural Selection, or Evidence of Design Limitations? , 1991, The American Naturalist.

[15]  Karsten P. Ulland,et al.  Vii. References , 2022 .

[16]  D. Posada,et al.  Model selection and model averaging in phylogenetics: advantages of akaike information criterion and bayesian approaches over likelihood ratio tests. , 2004, Systematic biology.

[17]  Alexandros Stamatakis,et al.  Phylogenetic models of rate heterogeneity: a high performance computing perspective , 2006, Proceedings 20th IEEE International Parallel & Distributed Processing Symposium.

[18]  Y. Winter In vivo measurement of near maximal rates of nutrient absorption in a mammal. , 1998, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[19]  N. Rosenberg,et al.  Discordance of Species Trees with Their Most Likely Gene Trees , 2006, PLoS genetics.

[20]  N. Kennaway,et al.  Mitochondrial encephalomyopathy and complex III deficiency associated with a stop-codon mutation in the cytochrome b gene. , 2000, American journal of human genetics.

[21]  Ralph Simon,et al.  High activity enables life on a high-sugar diet: blood glucose regulation in nectar-feeding bats , 2011, Proceedings of the Royal Society B: Biological Sciences.

[22]  Hidetoshi Shimodaira,et al.  Multiple Comparisons of Log-Likelihoods with Applications to Phylogenetic Inference , 1999, Molecular Biology and Evolution.

[23]  C. Patterson Homology in classical and molecular biology. , 1988, Molecular biology and evolution.

[24]  H. Schuitemaker,et al.  Evolution of R5 and X4 human immunodeficiency virus type 1 gag sequences in vivo: evidence for recombination. , 2003, Virology.

[25]  A. Yoder,et al.  Multiple nuclear loci reveal patterns of incomplete lineage sorting and complex species history within western mouse lemurs (Microcebus). , 2007, Molecular phylogenetics and evolution.

[26]  P. Barrett,et al.  Modelling the past: new generation approaches to understanding biological patterns in the fossil record , 2012, Biology Letters.

[27]  A. Graybeal,et al.  Is it better to add taxa or characters to a difficult phylogenetic problem? , 1998, Systematic biology.

[28]  E. Kalko,et al.  Gleaning bats as underestimated predators of herbivorous insects: diet of Micronycteris microtis (Phyllostomidae) in Panama , 2005, Journal of Tropical Ecology.

[29]  J. Rougemont,et al.  A rapid bootstrap algorithm for the RAxML Web servers. , 2008, Systematic biology.

[30]  J. Baldwin,et al.  Resolving phylogenetic incongruence to articulate homology and phenotypic evolution: a case study from Nematoda , 2010, Proceedings of the Royal Society B: Biological Sciences.

[31]  U. Gyllensten,et al.  Rate variation between mitochondrial domains and adaptive evolution in humans. , 2007, Human molecular genetics.

[32]  T. A. Link,et al.  Complete structure of the 11-subunit bovine mitochondrial cytochrome bc1 complex. , 1998, Science.

[33]  Ziheng Yang,et al.  Branch-length prior influences Bayesian posterior probability of phylogeny. , 2005, Systematic biology.

[34]  Mark Wilkinson,et al.  A COMPARISON OF TWO METHODS OF CHARACTER CONSTRUCTION , 1995 .

[35]  N. Moran Accelerated evolution and Muller's rachet in endosymbiotic bacteria. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[36]  S. Carroll,et al.  Genome-scale approaches to resolving incongruence in molecular phylogenies , 2003, Nature.

[37]  John P. Huelsenbeck,et al.  MrBayes 3: Bayesian phylogenetic inference under mixed models , 2003, Bioinform..

[38]  R. A. Van Den Bussche,et al.  PHYLOGENETIC RELATIONSHIPS AMONG RECENT CHIROPTERAN FAMILIES AND THE IMPORTANCE OF CHOOSING APPROPRIATE OUT-GROUP TAXA , 2004 .

[39]  E. Dumont,et al.  Connecting behaviour and performance: the evolution of biting behaviour and bite performance in bats , 2009, Journal of evolutionary biology.

[40]  Ziheng Yang PAML 4: phylogenetic analysis by maximum likelihood. , 2007, Molecular biology and evolution.

[41]  N. Moran,et al.  Phylogenetics and the Cohesion of Bacterial Genomes , 2003, Science.

[42]  A. Yoder,et al.  Using secondary structure to identify ribosomal numts: cautionary examples from the human genome. , 2002, Molecular biology and evolution.

[43]  R. Baker,et al.  Diversification among New World leaf-nosed bats : an evolutionary hypothesis and classification inferred from digenomic congruence of DNA sequence / , 2003 .

[44]  Geoffrey J. Barton,et al.  The Jalview Java alignment editor , 2004, Bioinform..

[45]  J. Wiens Can incomplete taxa rescue phylogenetic analyses from long-branch attraction? , 2005, Systematic biology.

[46]  Michael P. Cummings,et al.  PAUP* [Phylogenetic Analysis Using Parsimony (and Other Methods)] , 2004 .

[47]  J. Farris THE RETENTION INDEX AND THE RESCALED CONSISTENCY INDEX , 1989, Cladistics : the international journal of the Willi Hennig Society.

[48]  Jianzhi Zhang,et al.  Evolution of the sweet taste receptor gene Tas1r2 in bats. , 2010, Molecular biology and evolution.

[49]  Liang Liu,et al.  Estimating Species Trees Using Multiple-Allele DNA Sequence Data , 2008, Evolution; international journal of organic evolution.

[50]  P J Waddell,et al.  Using novel phylogenetic methods to evaluate mammalian mtDNA, including amino acid-invariant sites-LogDet plus site stripping, to detect internal conflicts in the data, with special reference to the positions of hedgehog, armadillo, and elephant. , 1999, Systematic biology.

[51]  N. Moran,et al.  From Gene Trees to Organismal Phylogeny in Prokaryotes:The Case of the γ-Proteobacteria , 2003, PLoS biology.

[52]  J. Wiens,et al.  Paleontology, genomics, and combined-data phylogenetics: can molecular data improve phylogeny estimation for fossil taxa? , 2009, Systematic biology.

[53]  Z. Yang,et al.  Models of amino acid substitution and applications to mitochondrial protein evolution. , 1998, Molecular biology and evolution.

[54]  P. Wagner Modelling rate distributions using character compatibility: implications for morphological evolution among fossil invertebrates , 2012, Biology Letters.

[55]  Stephen J O'Brien,et al.  The adequacy of morphology for reconstructing the early history of placental mammals. , 2007, Systematic biology.

[56]  P. Lewis A likelihood approach to estimating phylogeny from discrete morphological character data. , 2001, Systematic biology.

[57]  N. Sinha,et al.  Homologies in Leaf Form Inferred from KNOXI Gene Expression During Development , 2002, Science.

[58]  M. Feldman,et al.  Rates of DNA Duplication and Mitochondrial DNA Insertion in the Human Genome , 2004, Journal of Molecular Evolution.

[59]  Ary,et al.  The Role of Subjectivity in Reconstructing Ancestral Character States : A Bayesian Approach to Unknown Rates , States , and Transformation Asymmetries , 2008 .

[60]  James S. Farris,et al.  The retention index and homoplasy excess , 1989 .

[61]  L. Dávalos,et al.  PHYLOGENY OF THE LONCHOPHYLLINI (CHIROPTERA: PHYLLOSTOMIDAE) , 2004 .

[62]  Ziheng Yang,et al.  A Maximum Likelihood Method for Detecting Functional Divergence at Individual Codon Sites, with Application to Gene Family Evolution , 2004, Journal of Molecular Evolution.

[63]  J A Eisen,et al.  Microbial Genes in the Human Genome: Lateral Transfer or Gene Loss? , 2001, Science.

[64]  L. Dávalos,et al.  Molecular phylogeny of funnel-eared bats (Chiroptera: Natalidae), with notes on biogeography and conservation. , 2005, Molecular phylogenetics and evolution.

[65]  T. Griffiths Systematics of the New World nectar-feeding bats (Mammalia, Phyllostomidae), based on the morphology of the hyoid and lingual regions. American Museum novitates ; no. 2742 , 1982 .

[66]  H. Philippe,et al.  Multigene analyses of bilaterian animals corroborate the monophyly of Ecdysozoa, Lophotrochozoa, and Protostomia. , 2005, Molecular biology and evolution.

[67]  L. Dávalos,et al.  Short‐faced bats (Phyllostomidae: Stenodermatina): a Caribbean radiation of strict frugivores , 2007 .

[68]  J. Speakman,et al.  Nectar‐feeding bats fuel their high metabolism directly with exogenous carbohydrates , 2007 .

[69]  M. Ruedi,et al.  Molecular systematics of bats of the genus Myotis (Vespertilionidae) suggests deterministic ecomorphological convergences. , 2001, Molecular phylogenetics and evolution.

[70]  J. Jernvall,et al.  The hypocone as a key innovation in mammalian evolution. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[71]  F. Lutzoni,et al.  Bayes or bootstrap? A simulation study comparing the performance of Bayesian Markov chain Monte Carlo sampling and bootstrapping in assessing phylogenetic confidence. , 2003, Molecular biology and evolution.

[72]  P. Arctander,et al.  Evidence from milk casein genes that cetaceans are close relatives of hippopotamid artiodactyls. , 1996, Molecular biology and evolution.

[73]  J. Felsenstein Cases in which Parsimony or Compatibility Methods will be Positively Misleading , 1978 .

[74]  L. Navarro,et al.  When did plants become important to leaf‐nosed bats? Diversification of feeding habits in the family Phyllostomidae , 2011, Molecular ecology.

[75]  M. Donoghue,et al.  PATTERNS OF VARIATION IN LEVELS OF HOMOPLASY , 1989, Evolution; international journal of organic evolution.

[76]  P. Mitchell,et al.  The protonmotive Q cycle: A general formulation , 1975, FEBS letters.

[77]  S. Vries,et al.  Mitochondrial cytochrome b: evolution and structure of the protein. , 1993, Biochimica et biophysica acta.

[78]  Todd A. Castoe,et al.  Evidence for an ancient adaptive episode of convergent molecular evolution , 2009, Proceedings of the National Academy of Sciences.

[79]  R. Baker,et al.  Molecular Phylogenetics of the Phyllostomid Bat Genus micronycteris with Descriptions of Two New Subgenera , 2007 .

[80]  P. Slonimski,et al.  The C‐terminal domain of yeast cytochrome b is essential for a correct assembly of the mitochondrial cytochrome bc 1 complex , 1993, FEBS letters.

[81]  S. O’Brien,et al.  Nuclear gene sequences confirm an ancient link between New Zealand's short-tailed bat and South American noctilionoid bats. , 2003, Molecular Phylogenetics and Evolution.

[82]  T. Griffiths On the phylogeny of the glossophaginae and the proper use of outgroup analysis , 1983 .

[83]  Hidetoshi Shimodaira An approximately unbiased test of phylogenetic tree selection. , 2002, Systematic biology.

[84]  Alan M. Moses,et al.  Widespread Discordance of Gene Trees with Species Tree in Drosophila: Evidence for Incomplete Lineage Sorting , 2006, PLoS genetics.

[85]  M. Muggeo,et al.  segmented: An R package to Fit Regression Models with Broken-Line Relationships , 2008 .

[86]  Gang Li,et al.  The hearing gene Prestin reunites echolocating bats , 2008, Proceedings of the National Academy of Sciences.

[87]  P. Hebert,et al.  DNA barcoding of Neotropical bats: species identification and discovery within Guyana , 2007 .

[88]  Andrew P. Gibson,et al.  A comprehensive analysis of mammalian mitochondrial genome base composition and improved phylogenetic methods. , 2005, Molecular biology and evolution.

[89]  Kazutaka Katoh,et al.  Recent developments in the MAFFT multiple sequence alignment program , 2008, Briefings Bioinform..

[90]  D. Hillis,et al.  Resolution of phylogenetic conflict in large data sets by increased taxon sampling. , 2006, Systematic biology.

[91]  R. Baker,et al.  Systematics of Vampyressa and Related Genera of Phyllostomid Bats as Determined by Cytochrome-B Sequences , 2004 .

[92]  M. Handcock,et al.  Relative Distribution Methods in the Social Sciences , 1999 .

[93]  F. Hailer,et al.  Hybridization among Three Native North American Canis Species in a Region of Natural Sympatry , 2008, PloS one.

[94]  A. Fischer,et al.  Identical mutations in RAG1 or RAG2 genes leading to defective V(D)J recombinase activity can cause either T-B-severe combined immune deficiency or Omenn syndrome. , 2001, Blood.

[95]  Patricia W. Freeman Macroevolution in Microchiroptera: Recoupling morphology and ecology with phylogeny , 2000 .

[96]  A. Purvis,et al.  A phylogenetic supertree of the bats (Mammalia: Chiroptera) , 2002, Biological reviews of the Cambridge Philosophical Society.

[97]  R. A. Van Den Bussche,et al.  MOLECULAR PHYLOGENETICS AND TAXONOMIC REVISION OF THE GENUS TONATIA (CHIROPTERA: PHYLLOSTOMIDAE) , 2002 .

[98]  Steven Maere,et al.  Plants with double genomes might have had a better chance to survive the Cretaceous–Tertiary extinction event , 2009, Proceedings of the National Academy of Sciences.

[99]  Scott V Edwards,et al.  Coalescent methods for estimating phylogenetic trees. , 2009, Molecular phylogenetics and evolution.

[100]  D. Penny,et al.  Genome-scale phylogeny and the detection of systematic biases. , 2004, Molecular biology and evolution.

[101]  Daryl E. Wilson,et al.  Mammal Species of the World: A Taxonomic and Geographic Reference , 1993 .

[102]  J. Marchalonis,et al.  'Big Bang' emergence of the combinatorial immune system. , 1999, Developmental and comparative immunology.

[103]  M. Cox,et al.  Population growth of Mexican free-tailed bats (Tadarida brasiliensis mexicana) predates human agricultural activity , 2011, BMC Evolutionary Biology.

[104]  N. Simmons The Importance of Methods: Archontan Phylogeny and Cladistic Analysis of Morphological Data , 1993 .

[105]  Naiara Rodríguez-Ezpeleta,et al.  Detecting and overcoming systematic errors in genome-scale phylogenies. , 2007, Systematic biology.

[106]  M. Rockman,et al.  PHYLOGENY OF PHYLLOSTOMID BATS (MAMMALIA: CHIROPTERA): DATA FROM DIVERSE MORPHOLOGICAL SYSTEMS, SEX CHROMOSOMES, AND RESTRICTION SITES , 2000 .

[107]  Ying Li,et al.  The hearing gene Prestin unites echolocating bats and whales , 2010, Current Biology.

[108]  P. Wagner Exhaustion of morphologic character states among fossil taxa. , 2000, Evolution; international journal of organic evolution.

[109]  Derrick J. Zwickl,et al.  Increased taxon sampling greatly reduces phylogenetic error. , 2002, Systematic biology.

[110]  L. Excoffier,et al.  Recurrent replacement of mtDNA and cryptic hybridization between two sibling bat species Myotis myotis and Myotis blythii , 2006, Proceedings of the Royal Society B: Biological Sciences.

[111]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[112]  D. Hillis,et al.  When are phylogenetic analyses misled by convergence? A case study in Texas cave salamanders. , 2003, Systematic biology.

[113]  W. Murphy,et al.  Supermatrix and species tree methods resolve phylogenetic relationships within the big cats, Panthera (Carnivora: Felidae). , 2010, Molecular phylogenetics and evolution.

[114]  Alexandros Stamatakis,et al.  RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models , 2006, Bioinform..

[115]  A. Henderson Phylogenetic analysis of morphological data , 2002, Brittonia.

[116]  Tenley M. Conway,et al.  PHYLOGENETIC RELATIONSHIPS OF MORMOOPID BATS (CHIROPTERA: MORMOOPIDAE) BASED ON MORPHOLOGICAL DATA , 2001 .

[117]  H. Philippe,et al.  Suppression of long-branch attraction artefacts in the animal phylogeny using a site-heterogeneous model , 2007, BMC Evolutionary Biology.

[118]  H. Kishino,et al.  Dating of the human-ape splitting by a molecular clock of mitochondrial DNA , 2005, Journal of Molecular Evolution.

[119]  Genji Kurisu,et al.  Transmembrane traffic in the cytochrome b6f complex. , 2006, Annual review of biochemistry.

[120]  S. Edwards,et al.  Comparison of species tree methods for reconstructing the phylogeny of bearded manakins (Aves: Pipridae, Manacus) from multilocus sequence data. , 2008, Systematic biology.

[121]  Dan Graur,et al.  A comparative analysis of numt evolution in human and chimpanzee. , 2007, Molecular biology and evolution.

[122]  F. Delsuc,et al.  Phylogenomics: the beginning of incongruence? , 2006, Trends in genetics : TIG.

[123]  Ziheng Yang,et al.  Fair-balance paradox, star-tree paradox, and Bayesian phylogenetics. , 2007, Molecular biology and evolution.

[124]  S. Andersson,et al.  A phylogenomic study of endosymbiotic bacteria. , 2004, Molecular biology and evolution.

[125]  F. Delsuc,et al.  Tunicates and not cephalochordates are the closest living relatives of vertebrates , 2006, Nature.

[126]  F. Papavasiliou,et al.  V(D)J Recombination and the Evolution of the Adaptive Immune System , 2003, PLoS biology.

[127]  E. Kalko,et al.  FORAGING STRATEGY AND BREEDING CONSTRAINTS OF RHINOPHYLLA PUMILIO (PHYLLOSTOMIDAE) IN THE AMAZON LOWLANDS , 2007 .

[128]  M. Springer,et al.  Secondary structure and patterns of evolution among mammalian mitochondrial 12S rRNA molecules , 1996, Journal of Molecular Evolution.

[129]  Ziheng Yang Empirical evaluation of a prior for Bayesian phylogenetic inference , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[130]  S. Rossiter,et al.  Historical male‐mediated introgression in horseshoe bats revealed by multilocus DNA sequence data , 2010, Molecular ecology.

[131]  Hans-Ulrich Schnitzler,et al.  The roles of echolocation and olfaction in two Neotropical fruit-eating bats, Carollia perspicillata and C. castanea, feeding on Piper , 1998, Behavioral Ecology and Sociobiology.

[132]  M. S. Lee,et al.  Partitioned likelihood support and the evaluation of data set conflict. , 2003, Systematic biology.

[133]  V. Morell The Roots of Phylogeny , 1996 .

[134]  R. Gennis,et al.  Energy transduction by cytochrome complexes in mitochondrial and bacterial respiration: the enzymology of coupling electron transfer reactions to transmembrane proton translocation. , 1994, Annual review of biochemistry.

[135]  R. Baker,et al.  SYSTEMATICS OF BATS OF THE GENUS GLOSSOPHAGA (CHIROPTERA: PHYLLOSTOMIDAE) AND PHYLOGEOGRAPHY IN G. SORICINA BASED ON THE CYTOCHROME-b GENE , 2001 .

[136]  J. Masters Taking phylogenetics beyond pattern analysis: can models of genome dynamics guide predictions about homoplasy in morphological and behavioral data sets? , 2007, Journal of human evolution.

[137]  P. Hofstaetter [Similarity]. , 2020, Psyche.

[138]  S. Richards,et al.  Widespread Lateral Gene Transfer from Intracellular Bacteria to Multicellular Eukaryotes , 2007, Science.

[139]  J. Huelsenbeck Is the Felsenstein zone a fly trap? , 1997, Systematic biology.

[140]  James Dale Smith,et al.  Genealogy of the New World Nectar-feeding Bats Reexamined: A Reply to Griffiths , 1984 .

[141]  Bryan C Carstens,et al.  Does gene flow destroy phylogenetic signal? The performance of three methods for estimating species phylogenies in the presence of gene flow. , 2008, Molecular phylogenetics and evolution.

[142]  F. Massey The Kolmogorov-Smirnov Test for Goodness of Fit , 1951 .

[143]  David R. Anderson,et al.  Model Selection and Multimodel Inference , 2003 .

[144]  Joseph P. Bielawski,et al.  Maximum likelihood methods for detecting adaptive evolution after gene duplication , 2004, Journal of Structural and Functional Genomics.

[145]  S. Tavaré Some probabilistic and statistical problems in the analysis of DNA sequences , 1986 .

[146]  M. Donoghue,et al.  Mega-phylogeny approach for comparative biology: an alternative to supertree and supermatrix approaches , 2009, BMC Evolutionary Biology.

[147]  M. Zórtea Reproductive patterns and feeding habits of three nectarivorous bats (Phyllostomidae: Glossophaginae) from the Brazilian Cerrado. , 2003, Brazilian journal of biology = Revista brasleira de biologia.

[148]  Richard H. Ree,et al.  Homoplasy and Developmental Constraint: A Model and an Example from Plants1 , 2000 .

[149]  L. Dávalos,et al.  Saturation and base composition bias explain phylogenomic conflict in Plasmodium. , 2008, Genomics.

[150]  Olaf R. P. Bininda-Emonds,et al.  transAlign: using amino acids to facilitate the multiple alignment of protein-coding DNA sequences , 2005, BMC Bioinformatics.

[151]  P. Gaubert,et al.  Mosaics of convergences and noise in morphological phylogenies: what's in a viverrid-like carnivoran? , 2005, Systematic biology.

[152]  R. Baker,et al.  Molecular systematics of Vampyressine bats (Phyllostomidae: Stenodermatinae) with comparison of direct and indirect surveys of mitochondrial DNA variation. , 2006, Molecular phylogenetics and evolution.

[153]  H. B. Mann,et al.  On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other , 1947 .

[154]  C. Simon,et al.  Exploring among-site rate variation models in a maximum likelihood framework using empirical data: effects of model assumptions on estimates of topology, branch lengths, and bootstrap support. , 2001, Systematic biology.

[155]  O. von Helversen,et al.  Evolution of nectarivory in phyllostomid bats (Phyllostomidae Gray, 1825, Chiroptera: Mammalia) , 2010, BMC Evolutionary Biology.

[156]  Ziheng Yang,et al.  Maximum-likelihood models for combined analyses of multiple sequence data , 1996, Journal of Molecular Evolution.

[157]  W. Doolittle,et al.  Do orthologous gene phylogenies really support tree-thinking? , 2005, BMC Evolutionary Biology.

[158]  M. Springer,et al.  The Secondary Structure of Mammalian Mitochondrial 16S rRNA Molecules: Refinements Based on a Comparative Phylogenetic Approach , 2002, Journal of Mammalian Evolution.

[159]  M. Sadofsky Recombination‐activating gene proteins: more regulation, please , 2004, Immunological reviews.

[160]  Bryan C. Carstens,et al.  A Phylogeny of the Neotropical Nectar-Feeding Bats (Chiroptera: Phyllostomidae) Based on Morphological and Molecular Data , 2002, Journal of Mammalian Evolution.

[161]  S. O’Brien,et al.  Mitochondrial introgressions into the nuclear genome of the domestic cat. , 2007, The Journal of heredity.

[162]  J. Marinho-Filho,et al.  Diet and activity of Lonchophylla dekeyseri (Chiroptera, Phyllostomidae) in the Federal District, Brazil , 2002 .

[163]  O. Gascuel,et al.  A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. , 2003, Systematic biology.

[164]  M. R. Carvalho,et al.  Systematics must Embrace Comparative Biology and Evolution, not Speed and Automation , 2008, Evolutionary Biology.

[165]  Kazutaka Katoh,et al.  Improved accuracy of multiple ncRNA alignment by incorporating structural information into a MAFFT-based framework , 2008, BMC Bioinformatics.

[166]  S. Tarzami,et al.  Complete Mitochondrial Genome of a Neotropical Fruit Bat, Artibeus jamaicensis, and a New Hypothesis of the Relationships of Bats to Other Eutherian Mammals , 1998, Journal of Molecular Evolution.

[167]  Ana L. Porzecanski,et al.  Accounting for molecular stochasticity in systematic revisions: species limits and phylogeny of Paroaria. , 2009, Molecular phylogenetics and evolution.

[168]  R. Wilson,et al.  Evolution of Symbiotic Bacteria in the Distal Human Intestine , 2007, PLoS biology.

[169]  R. Baker Systematics of bats of the family Phyllostomidae based on RAG2 DNA sequences , 2000 .

[170]  Yang Liu,et al.  Convergent sequence evolution between echolocating bats and dolphins , 2010, Current Biology.

[171]  M. Feldman,et al.  Genetic Structure of Human Populations , 2002, Science.

[172]  M. Brock Fenton,et al.  Visual acuity, sensitivity and binocularity in a gleaning insectivorous bat, Macrotus californicus (Chiroptera: Phyllostomidae) , 1986, Animal Behaviour.

[173]  A. Yoder,et al.  Population Genetic Analysis of Myzopoda (Chiroptera: Myzopodidae) in Madagascar , 2008 .

[174]  J. Bull,et al.  Partitioning and combining data in phylogenetic analysis , 1993 .

[175]  Sharlene E. Santana,et al.  Morphological innovation, diversification and invasion of a new adaptive zone , 2012, Proceedings of the Royal Society B: Biological Sciences.

[176]  Douglas L Altshuler,et al.  Phylogenetic systematics and biogeography of hummingbirds: Bayesian and maximum likelihood analyses of partitioned data and selection of an appropriate partitioning strategy. , 2007, Systematic biology.

[177]  M. Bruford,et al.  Distinguishing gorilla mitochondrial sequences from nuclear integrations and PCR recombinants: guidelines for their diagnosis in complex sequence databases. , 2007, Molecular phylogenetics and evolution.

[178]  Bruce D. Patterson,et al.  Phylogenetics and biogeography of the broad-nosed bats, genus Platyrrhinus (Chiroptera: Phyllostomidae). , 2008, Molecular phylogenetics and evolution.

[179]  Jim Leebens-Mack,et al.  Identifying the basal angiosperm node in chloroplast genome phylogenies: sampling one's way out of the Felsenstein zone. , 2005, Molecular biology and evolution.

[180]  Masami Hasegawa,et al.  CONSEL: for assessing the confidence of phylogenetic tree selection , 2001, Bioinform..

[181]  Zaid Abdo,et al.  Performance-based selection of likelihood models for phylogeny estimation. , 2003, Systematic biology.