Evidence for chaotic dynamics in the Jovian magnetosphere

Abstract In this paper, for the first time we examine the hypothesis of chaotic behaviour for the dynamics of the inner of Jupiter's magnetosphere as which is appeared in energetic populations. For this, we study geometrical and dynamical characteristics of Jovian energetic ion time series in the reconstructed phase space by using the SVD extended chaotic analysis. The null hypothesis that is applied for the SVD reconstructed signals reveals a strong stochastic and high-dimensional external component, as well as an internal low-dimensional, nonlinear and chaotic deterministic component. The results of this work indicate the existence of a low-dimensional strange attractor underlying the Jovian magnetospheric dynamics which produces the observed quasi-periodic phenomena.

[1]  Schreiber,et al.  Nonlinear noise reduction: A case study on experimental data. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[2]  F. A. Borotto,et al.  Chaotic dynamics of nonthermal planetary radio emissions , 2000 .

[3]  Martin Casdagli,et al.  Nonlinear Modeling And Forecasting , 1992 .

[4]  P. Grassberger,et al.  Measuring the Strangeness of Strange Attractors , 1983 .

[5]  Helen C. Cowley,et al.  Papers on Magnetospheric Physics Plasma flow in the Jovian magnetosphere and related magnetic effects: Ulysses observations , 1996 .

[6]  James Theiler,et al.  Detecting Nonlinearity in Data with Long Coherence Times , 1993, comp-gas/9302003.

[7]  James Theiler,et al.  Testing for nonlinearity in time series: the method of surrogate data , 1992 .

[8]  Fraser,et al.  Independent coordinates for strange attractors from mutual information. , 1986, Physical review. A, General physics.

[9]  J. D. Doll,et al.  Fourier path-integral Monte Carlo methods: Partial averaging. , 1985, Physical review letters.

[10]  Robert Shaw Strange Attractors, Chaotic Behavior, and Information Flow , 1981 .

[11]  Mauricio Barahona,et al.  Detection of nonlinear dynamics in short, noisy time series , 1996, Nature.

[12]  J. Gérard,et al.  Ultraviolet imaging of the Jovian aurora with the Hubble Space Telescope , 1992 .

[13]  Andreas S. Weigend,et al.  Time Series Prediction: Forecasting the Future and Understanding the Past , 1994 .

[14]  Leonard A. Smith,et al.  Distinguishing between low-dimensional dynamics and randomness in measured time series , 1992 .

[15]  G. P. King,et al.  Extracting qualitative dynamics from experimental data , 1986 .

[16]  Michael Small,et al.  Testing for nonlinearity in time series without the Fourier transform. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  W. Brogan Modern Control Theory , 1971 .

[18]  D. Summers,et al.  On the existence of a Lorenz Strange Attractor in magnetospheric convection dynamics , 1992 .

[19]  Mingzhou Ding,et al.  Estimating correlation dimension from a chaotic time series: when does plateau onset occur? , 1993 .

[20]  P. Grassberger,et al.  A simple noise-reduction method for real data , 1991 .

[21]  D. Ruelle,et al.  Ergodic theory of chaos and strange attractors , 1985 .

[22]  D. Kugiumtzis State space reconstruction parameters in the analysis of chaotic time series—the role of the time window length , 1996, comp-gas/9602002.

[23]  Schreiber,et al.  Improved Surrogate Data for Nonlinearity Tests. , 1996, Physical review letters.

[24]  J. Argyris,et al.  The influence of noise on the correlation dimension of chaotic attractors , 1998 .

[25]  W. Ditto,et al.  Chaos: From Theory to Applications , 1992 .

[26]  D. Peregrine Nonlinear topics in Ocean Physics , 1991 .

[27]  T. Sanderson,et al.  Impulsive bursts of energetic particles in the high-latitude duskside magnetosphere of Jupiter , 1995 .

[28]  Leonard A. Smith Identification and prediction of low dimensional dynamics , 1992 .

[29]  Sawada,et al.  Measurement of the Lyapunov spectrum from a chaotic time series. , 1985, Physical review letters.

[30]  G. P. Pavlos,et al.  SVD analysis of the magnetospheric AE index time series and comparison with low-dimensional chaotic dynamics , 2001 .

[31]  J. Elsner,et al.  Singular Spectrum Analysis: A New Tool in Time Series Analysis , 1996 .

[32]  D. Kugiumtzis,et al.  Nonlinear analysis of magnetospheric data Part I. Geometric characteristics of the AE index time series and comparison with nonlinear surrogate data , 1999 .

[33]  A. Rigas,et al.  Quasi‐periodic behavior of ion events and wave activity upstream from Jupiter's Bow Shock: Ulysses' observations , 1998 .

[34]  M. Dougherty,et al.  Energetic particles in the duskside Jovian Magnetosphere , 1999 .

[35]  F. Takens Detecting strange attractors in turbulence , 1981 .

[36]  M. B. Priestley,et al.  Non-linear and non-stationary time series analysis , 1990 .

[37]  Ioannis Andreadis,et al.  On the influence of noise on the largest Lyapunov exponent and on the geometric structure of attractors , 1998 .

[38]  I. Karanikola,et al.  Energetic ion populations and periodicities near Jupiter , 1998 .

[39]  Daniel N. Baker,et al.  A description of the solar wind-magnetosphere coupling based on nonlinear filters , 1995 .

[40]  W. Farrell,et al.  Quasiperiodic Jovian Radio bursts: observations from the Ulysses Radio and Plasma Wave Experiment , 1993 .

[41]  Farmer,et al.  Predicting chaotic time series. , 1987, Physical review letters.

[42]  James Theiler,et al.  Using surrogate data to detect nonlinearity in time series , 1991 .

[43]  M. K. Dougherty,et al.  Correspondence between field aligned currents observed by Ulysses and HST auroral emission , 1998 .

[44]  A. Rigas,et al.  Chaos and magnetospheric dynamics , 1994 .

[45]  I. Karanikola,et al.  Large-scale energetic particle layers in the high latitude Jovian magnetosphere , 2001 .

[46]  A. Provenzale,et al.  Finite correlation dimension for stochastic systems with power-law spectra , 1989 .

[47]  J. Simpson,et al.  Impulsive bursts of relativistic electrons discovered during Ulysses' traversal of Jupiter's dusk-side magnetosphere , 1993 .

[48]  J. Theiler Some Comments on the Correlation Dimension of 1/fαNoise , 1991 .

[49]  Emmanuel T. Sarris,et al.  Geometrical characteristics of magnetospheric energetic ion time series: evidence for low dimensional chaos , 2003 .

[50]  D. Prichard,et al.  The non‐linear response of the magnetosphere: 30 October 1978 , 1993, comp-gas/9305003.

[51]  Emmanuel T. Sarris,et al.  Comments and new results about the magnetospheric chaos hypothesis , 1999 .

[52]  L. Tsimring,et al.  The analysis of observed chaotic data in physical systems , 1993 .

[53]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[54]  Dimitris Kugiumtzis,et al.  Chaotic time series. Part II. System Identification and Prediction , 1994, chao-dyn/9401003.

[55]  H. Tong Non-linear time series. A dynamical system approach , 1990 .

[56]  Lauterborn,et al.  Liapunov exponents from a time series of acoustic chaos. , 1989, Physical review. A, General physics.