Epileptiform synchronization in the rat insular and perirhinal cortices in vitro

The hippocampus plays a primary role in temporal lobe epilepsy, a common form of partial epilepsy in adults. Recent studies, however, indicate that extrahippocampal areas such as the perirhinal and insular cortices represent important participants in this epileptic disorder. By employing field potential recordings in the in vitro 4‐aminopyridine model of temporal lobe epilepsy, we have investigated here the contribution of glutamatergic and GABAergic signaling to epileptiform activity in these structures. First, we provide evidence of epileptiform synchronicity between the perirhinal and insular cortices, and resolve some pharmacological and network mechanisms involved in sustaining the interictal‐ and ictal‐like discharges recorded there. Second, we report that in the absence of ionotropic glutamatergic transmission, GABAergic networks produce synchronous potentials that spread between the perirhinal and insular cortices. Finally, we have established that such activity is modulated by activating µ‐opioid receptors. Our findings support clinical and experimental evidence concerning the involvement of the perirhinal and insular cortex networks in temporal lobe epilepsy, and provide observations that may impact research focussing on the role of the insular cortex in nociception.

[1]  D. Mattia,et al.  Pharmacology and electrophysiology of a synchronous gaba-mediated potential in the human neocortex , 1994, Neuroscience.

[2]  D. Mash,et al.  Differential alterations in muscarinic receptor subtypes in Alzheimer's disease: implications for cholinergic-based therapies. , 1995, Life sciences.

[3]  B H Gähwiler,et al.  Mechanism of mu‐opioid receptor‐mediated presynaptic inhibition in the rat hippocampus in vitro. , 1993, The Journal of physiology.

[4]  Margaret Fahnestock,et al.  Kindling and status epilepticus models of epilepsy: rewiring the brain , 2004, Progress in Neurobiology.

[5]  Keiko Sato,et al.  The insular but not the perirhinal cortex is involved in the expression of fully-kindled amygdaloid seizures in rats , 2001, Epilepsy Research.

[6]  M. Curtis,et al.  Interictal spikes in focal epileptogenesis , 2001, Progress in Neurobiology.

[7]  Massimo Avoli,et al.  Rat subicular networks gate hippocampal output activity in an in vitro model of limbic seizures , 2005, The Journal of physiology.

[8]  M. de Curtis,et al.  Discharge threshold is enhanced for several seconds after a single interictal spike in a model of focal epileptogenesis , 2001, The European journal of neuroscience.

[9]  M Vapalahti,et al.  MR volumetry of the entorhinal, perirhinal, and temporopolar cortices in drug-refractory temporal lobe epilepsy. , 2001, AJNR. American journal of neuroradiology.

[10]  D. Mcintyre,et al.  The Parahippocampal Cortices and Kindling , 2000, Annals of the New York Academy of Sciences.

[11]  J. Behr,et al.  Electrical and Chemical Long‐term Depression Do Not Attenuate Low‐Mg2+–induced Epileptiform Activity in the Entorhinal Cortex , 2005, Epilepsia.

[12]  R. Miles,et al.  On the Origin of Interictal Activity in Human Temporal Lobe Epilepsy in Vitro , 2002, Science.

[13]  E. Murray,et al.  Perirhinal Cortex and its Neighbours in the Medial Temporal Lobe: Contributions to Memory and Perception , 2005, The Quarterly journal of experimental psychology. B, Comparative and physiological psychology.

[14]  T. Kaneko,et al.  A group of cortical interneurons expressing μ-opioid receptor-like immunoreactivity: a double immunofluorescence study in the rat cerebral cortex , 2000, Neuroscience.

[15]  D. Arnold,et al.  Mesial temporal damage in temporal lobe epilepsy: a volumetric MRI study of the hippocampus, amygdala and parahippocampal region. , 2003, Brain : a journal of neurology.

[16]  Asla Pitkänen,et al.  Status Epilepticus in 12‐day‐old Rats Leads to Temporal Lobe Neurodegeneration and Volume Reduction: A Histologic and MRI Study , 2006, Epilepsia.

[17]  Peter Saggau,et al.  Mu-opioid receptors facilitate the propagation of excitatory activity in rat hippocampal area CA1 by disinhibition of all anatomical layers. , 2003, Journal of neurophysiology.

[18]  Masayuki Kobayashi,et al.  Preferential neuron loss in the rat piriform cortex following pilocarpine-induced status epilepticus , 2007, Epilepsy Research.

[19]  M. Avoli,et al.  4-aminopyridine-induced epileptiform activity and a GABA-mediated long- lasting depolarization in the rat hippocampus , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[20]  Alberto Granato,et al.  Analgesia and hyperalgesia from GABA-mediated modulation of the cerebral cortex , 2003, Nature.

[21]  M. Avoli,et al.  Effects of low concentrations of 4-aminopyridine on CA1 pyramidal cells of the hippocampus. , 1989, Journal of neurophysiology.

[22]  Giuseppe Biagini,et al.  Limbic network interactions leading to hyperexcitability in a model of temporal lobe epilepsy. , 2002, Journal of neurophysiology.

[23]  D. Mcintyre,et al.  Kindling in the perirhinal cortex , 1993, Brain Research.

[24]  M. Witter,et al.  Projections from the parahippocampal region to the prefrontal cortex in the rat: evidence of multiple pathways , 2002, The European journal of neuroscience.

[25]  F. Mauguière,et al.  Clinical manifestations of insular lobe seizures: a stereo-electroencephalographic study , 2008, Clinical Neurophysiology.

[26]  G. Buzsáki,et al.  Interneurons of the hippocampus , 1998, Hippocampus.

[27]  L. Swanson The Rat Brain in Stereotaxic Coordinates, George Paxinos, Charles Watson (Eds.). Academic Press, San Diego, CA (1982), vii + 153, $35.00, ISBN: 0 125 47620 5 , 1984 .

[28]  D. Madison,et al.  Opioid inhibition of GABA release from presynaptic terminals of rat hippocampal interneurons , 1992, Neuron.

[29]  M. de Curtis,et al.  Epileptiform ictal discharges are prevented by periodic interictal spiking in the olfactory cortex , 2003, Annals of neurology.

[30]  S. Wang,et al.  Unilateral low-frequency stimulation of central piriform cortex inhibits amygdaloid-kindled seizures in Sprague–Dawley rats , 2007, Neuroscience.

[31]  U. Heinemann,et al.  Epileptiform activity in combined slices of the hippocampus, subiculum and entorhinal cortex during perfusion with low magnesium medium , 1986, Neuroscience Letters.

[32]  C. Drake,et al.  Mu opioid receptors are in discrete hippocampal interneuron subpopulations , 2002, Hippocampus.

[33]  D. Amaral,et al.  Perirhinal and postrhinal cortices of the rat: A review of the neuroanatomical literature and comparison with findings from the monkey brain , 1995, Hippocampus.

[34]  N. Maidment,et al.  Opioid peptide release in the rat hippocampus after kainic acid‐induced status epilepticus , 2003, Hippocampus.

[35]  A Lücke,et al.  Synchronous GABA-Mediated Potentials and Epileptiform Discharges in the Rat Limbic System In Vitro , 1996, The Journal of Neuroscience.

[36]  Yitzhak Schiller,et al.  Cellular mechanisms underlying antiepileptic effects of low- and high-frequency electrical stimulation in acute epilepsy in neocortical brain slices in vitro. , 2007, Journal of neurophysiology.

[37]  Philippe Kahane,et al.  The hidden causes of surgery-resistant temporal lobe epilepsy: extratemporal or temporal plus? , 2005, Current opinion in neurology.

[38]  M. de Curtis,et al.  Propagation Dynamics of Epileptiform Activity Acutely Induced by Bicuculline in the Hippocampal–Parahippocampal Region of the Isolated Guinea Pig Brain , 2005, Epilepsia.

[39]  Paul Antoine Salin,et al.  Use-dependent increases in glutamate concentration activate presynaptic metabotropic glutamate receptors , 1997, Nature.

[40]  E. Cavalheiro,et al.  Pro-epileptic effect of alfentanil in rats subjected to pilocarpine-induced chronic epilepsy , 2006, Brain Research Bulletin.

[41]  S. Kuroda,et al.  A behavioral and immunohistochemical study on the development of perirhinal cortical kindling: a comparison with other types of limbic kindling , 1998, Brain Research.

[42]  A. Chapman,et al.  Glutamate and epilepsy. , 2000, The Journal of nutrition.

[43]  M. Avoli,et al.  Masking Synchronous GABA‐mediated Potentials Controls Limbic Seizures , 2002, Epilepsia.

[44]  M. Chesselet,et al.  Expression of Mu opioid receptor mRNA in rat brain: An in situ hybridization study at the single cell level , 1994, The Journal of comparative neurology.

[45]  M. Avoli,et al.  NMDA receptor‐mediated transmission contributes to network ‘hyperexcitability’ in the rat insular cortex , 2006, The European journal of neuroscience.

[46]  Hiroshi Shibasaki,et al.  Electric Stimulation on Human Cortex Suppresses Fast Cortical Activity and Epileptic Spikes , 2004, Epilepsia.

[47]  M. Avoli,et al.  Initiation of electrographic seizures by neuronal networks in entorhinal and perirhinal cortices in vitro , 2004, Neuroscience.

[48]  E. Pralong,et al.  Involvement of amygdala networks in epileptiform synchronization in vitro , 2003, Neuroscience.

[49]  Dominique M Durand,et al.  Effects of applied currents on spontaneous epileptiform activity induced by low calcium in the rat hippocampus , 1998, Brain Research.

[50]  C. Faingold,et al.  Evidence for the perirhinal cortex as a requisite component in the seizure network following seizure repetition in an inherited form of generalized clonic seizures , 2005, Brain Research.

[51]  K. Kaila,et al.  Ionic mechanisms of spontaneous GABAergic events in rat hippocampal slices exposed to 4-aminopyridine. , 1997, Journal of neurophysiology.

[52]  J. Burke,et al.  Presynaptic depression of synaptic transmission mediated by activation of metabotropic glutamate receptors in rat neocortex , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[53]  Miles A Whittington,et al.  Interneuron Diversity series: Inhibitory interneurons and network oscillations in vitro , 2003, Trends in Neurosciences.

[54]  R. Wong,et al.  Synchronization of inhibitory neurones in the guinea‐pig hippocampus in vitro. , 1994, The Journal of physiology.

[55]  Hiroshi Shibasaki,et al.  Low‐frequency Electric Cortical Stimulation Has an Inhibitory Effect on Epileptic Focus in Mesial Temporal Lobe Epilepsy , 2002, Epilepsia.

[56]  J. E. Wells,et al.  The Role of the Hyperpolarization-Activated Cationic CurrentIh in the Timing of Interictal Bursts in the Neonatal Hippocampus , 2003, The Journal of Neuroscience.

[57]  R. Traub,et al.  Simulations of epileptiform activity in the hippocampal CA3 region in vitro , 1994, Hippocampus.

[58]  D C Reutens,et al.  Morphometric Analysis of the Temporal Lobe in Temporal Lobe Epilepsy , 1998, Epilepsia.

[59]  Yehezkel Ben-Ari,et al.  The multiple facets of γ-aminobutyric acid dysfunction in epilepsy: review , 2005, Current opinion in neurology.

[60]  T. Freund,et al.  Impaired and repaired inhibitory circuits in the epileptic human hippocampus , 2005, Trends in Neurosciences.

[61]  M. Curtis,et al.  Increased discharge threshold after an interictal spike in human focal epilepsy , 2005, The European journal of neuroscience.

[62]  F. Mauguière,et al.  The role of the insular cortex in temporal lobe epilepsy , 2000, Annals of neurology.

[63]  W. Feindel,et al.  Entorhinal cortex in temporal lobe epilepsy , 1999, Neurology.

[64]  Pierre LeVan,et al.  High‐Frequency Intracerebral EEG Activity (100–500 Hz) Following Interictal Spikes , 2006, Epilepsia.

[65]  M. Buckley The Role of the Perirhinal Cortex and Hippocampus in Learning, Memory, and Perception , 2005, The Quarterly journal of experimental psychology. B, Comparative and physiological psychology.

[66]  D. Mcintyre,et al.  Perirhinal cortex involvement in limbic kindled seizures , 1996, Epilepsy Research.

[67]  Asla Pitkänen,et al.  MRI volumetry of the hippocampus, amygdala, entorhinal cortex, and perirhinal cortex after status epilepticus , 2000, Epilepsy Research.

[68]  E J Speckmann,et al.  Spontaneous sharp waves in human neocortical slices excised from epileptic patients. , 1998, Brain : a journal of neurology.

[69]  P. Ryvlin Avoid falling into the depths of the insular trap. , 2006, Epileptic disorders : international epilepsy journal with videotape.

[70]  L. Jasmin,et al.  Dopamine Reuptake Inhibition in the Rostral Agranular Insular Cortex Produces Antinociception , 1999, The Journal of Neuroscience.

[71]  M. de Curtis,et al.  Activity-Dependent pH Shifts and Periodic Recurrence of Spontaneous Interictal Spikes in a Model of Focal Epileptogenesis , 1998, The Journal of Neuroscience.

[72]  L. Jasmin,et al.  An Opioidergic Cortical Antinociception Triggering Site in the Agranular Insular Cortex of the Rat that Contributes to Morphine Antinociception , 1996, The Journal of Neuroscience.

[73]  L Lemieux,et al.  Extrahippocampal temporal lobe atrophy in temporal lobe epilepsy and mesial temporal sclerosis. , 2001, Brain : a journal of neurology.

[74]  M. E. Corcoran,et al.  Kindling of claustrum and insular cortex: comparison to perirhinal cortex in the rat , 2001, The European journal of neuroscience.

[75]  M. Avoli,et al.  Repetitive low-frequency stimulation reduces epileptiform synchronization in limbic neuronal networks , 2005, Neurobiology of Disease.

[76]  L. Jasmin,et al.  Rostral agranular insular cortex and pain areas of the central nervous system: A tract‐tracing study in the rat , 2004, The Journal of comparative neurology.

[77]  J. R. Augustine Circuitry and functional aspects of the insular lobe in primates including humans , 1996, Brain Research Reviews.

[78]  M. Avoli,et al.  CA3-Driven Hippocampal-Entorhinal Loop Controls Rather than Sustains In Vitro Limbic Seizures , 1997, The Journal of Neuroscience.

[79]  W. Poewe,et al.  Transient and permanent magnetic resonance imaging abnormalities after complex partial status epilepticus , 2006, Epilepsy & Behavior.

[80]  C A Tamminga,et al.  Entorhinal cortex in temporal lobe epilepsy. , 1995, The American journal of psychiatry.

[81]  F Andermann,et al.  Morphometric MRI Analysis of the Parahippocampal Region in Temporal Lobe Epilepsy , 2000, Annals of the New York Academy of Sciences.

[82]  G. Wig,et al.  Conditioned effects of kindling three different sites in the hippocampal complex of the rat. , 2005, Behavioral neuroscience.

[83]  M. Avoli,et al.  Network and pharmacological mechanisms leading to epileptiform synchronization in the limbic system in vitro , 2002, Progress in Neurobiology.