The predicates for the Voronoi diagram of ellipses

This paper examines the computation of the Voronoi diagram of a set of ellipses in the Euclidean plane. We propose the first complete algorithms, under the exact computation paradigm, for the predicates of an incremental algorithm: κ1 decides which one of 2 given ellipses is closest to a given exterior point; κ2 decides the position of a query ellipse relative to an external bitangent line of 2 given ellipses; κ3 decides the position of a query ellipse relative to a Voronoi circle of 3 given ellipses; κ4 determines the type of conflict between a Voronoi edge, defined by 4 given ellipses, and a query ellipse. The paper is restricted to non-intersecting ellipses, but the extension to arbitrary ones is possible.The ellipses are input in parametric representation or constructively in terms of their axes, center and rotation. For κ1 and κ2 we derive optimal algebraic conditions, solve them exactly and provide efficient implementations in C++. For κ3 we compute a tight bound on the number of complex tritangent circles and use the parametric form of the ellipses in order to design an exact subdivision-based algorithm, which is implemented on Maple. This approach essentially answers κ4 as well. We conclude with current work on optimizing κ3 and implementing it in C++.

[1]  Mariette Yvinec,et al.  An exact predicate for the optimal construction of the additively weighted Voronoi diagram , 2002 .

[2]  Jean-Daniel Boissonnat,et al.  Complexity of the Delaunay Triangulation of Points on Polyhedral Surfaces , 2003, Discret. Comput. Geom..

[3]  Ioannis Z. Emiris,et al.  Algebraic study of the Apollonius circle of three ellipses , 2005, EuroCG.

[4]  David G. Kirkpatrick,et al.  A compact piecewise-linear voronoi diagram for convex sites in the plane , 1996, Discret. Comput. Geom..

[5]  Mariette Yvinec,et al.  The Voronoi Diagram of Convex Objects in the Plane , 2003 .

[6]  Kurt Mehlhorn,et al.  Randomized construction diagrams* incremental of abstract Voronoi , 1993 .

[7]  Chee-Keng Yap,et al.  Optimal Voronoi Diagram Construction with n Convex Sites in Three Dimensions , 2007, Int. J. Comput. Geom. Appl..

[8]  L. Kucera,et al.  Randomized incremental construction of abstract Voronoi diagrams , 1993 .

[9]  Ioannis Z. Emiris,et al.  Comparing Real Algebraic Numbers of Small Degree , 2004, ESA.

[10]  Deok-Soo Kim,et al.  Voronoi diagram of a circle set from Voronoi diagram of a point set: II. Geometry , 2001, Comput. Aided Geom. Des..

[11]  François Anton,et al.  Voronoi diagrams of semi-algebraic sets , 2003 .

[12]  Ioannis Z. Emiris,et al.  Real Solving of Bivariate Polynomial Systems , 2005, CASC.

[13]  Jean-Daniel Boissonnat,et al.  Sur la complexité combinatoire des cellules des diagrammes de Voronoï Euclidiens et des enveloppes convexes de sphères de , 2022 .

[14]  Imma Boada,et al.  Multiresolution Approximations of Generalized Voronoi Diagrams , 2004, International Conference on Computational Science.

[15]  Chee Yap On guaranteed accuracy computation , 2004 .

[16]  Jean-Daniel Boissonnat,et al.  Convex Hull and Voronoi Diagram of Additively Weighted Points , 2005, ESA.

[17]  Wenping Wang,et al.  An algebraic condition for the separation of two ellipsoids , 2001, Comput. Aided Geom. Des..

[18]  Jean-Daniel Boissonnat,et al.  A Linear Bound on the Complexity of the Delaunay Triangulation of Points on Polyhedral Surfaces , 2004, Discret. Comput. Geom..

[19]  Otfried Cheong,et al.  The Voronoi Diagram of Curved Objects , 1995, SCG '95.

[20]  Mariette Yvinec,et al.  The Voronoi Diagram of Planar Convex Objects , 2003, ESA.

[21]  Bernard Mourrain,et al.  SYNAPS: A library for symbolic-numeric computation , 2005 .

[22]  Chee-Keng Yap,et al.  Fundamental problems of algorithmic algebra , 1999 .

[23]  Gershon Elber,et al.  Precise Voronoi cell extraction of free-form rational planar closed curves , 2005, SPM '05.

[24]  D. Anderson,et al.  Algorithms for minimization without derivatives , 1974 .

[25]  Laureano González-Vega,et al.  A new approach to characterizing the relative position of two ellipses depending on one parameter , 2006, Comput. Aided Geom. Des..

[26]  Ioannis Z. Emiris,et al.  The predicates of the Apollonius diagram: Algorithmic analysis and implementation , 2006, Comput. Geom..

[27]  Michel Pocchiola,et al.  A sum of squares theorem for visibility , 2001, SCG '01.

[28]  Luc Habert Computing bitangents for ellipses , 2005, CCCG.

[29]  Kurt Mehlhorn,et al.  A Separation Bound for Real Algebraic Expressions , 2001, ESA.

[30]  Kurt Mehlhorn,et al.  Randomized Incremental Construction of Abstract Voronoi Diagrams , 1993, Comput. Geom..

[31]  R. Brent Table errata: Algorithms for minimization without derivatives (Prentice-Hall, Englewood Cliffs, N. J., 1973) , 1975 .

[32]  David A. Cox,et al.  Using Algebraic Geometry , 1998 .

[33]  Kurt Mehlhorn,et al.  A Separation Bound for Real Algebraic Expressions , 2001, Algorithmica.