The predicates for the Voronoi diagram of ellipses
暂无分享,去创建一个
[1] Mariette Yvinec,et al. An exact predicate for the optimal construction of the additively weighted Voronoi diagram , 2002 .
[2] Jean-Daniel Boissonnat,et al. Complexity of the Delaunay Triangulation of Points on Polyhedral Surfaces , 2003, Discret. Comput. Geom..
[3] Ioannis Z. Emiris,et al. Algebraic study of the Apollonius circle of three ellipses , 2005, EuroCG.
[4] David G. Kirkpatrick,et al. A compact piecewise-linear voronoi diagram for convex sites in the plane , 1996, Discret. Comput. Geom..
[5] Mariette Yvinec,et al. The Voronoi Diagram of Convex Objects in the Plane , 2003 .
[6] Kurt Mehlhorn,et al. Randomized construction diagrams* incremental of abstract Voronoi , 1993 .
[7] Chee-Keng Yap,et al. Optimal Voronoi Diagram Construction with n Convex Sites in Three Dimensions , 2007, Int. J. Comput. Geom. Appl..
[8] L. Kucera,et al. Randomized incremental construction of abstract Voronoi diagrams , 1993 .
[9] Ioannis Z. Emiris,et al. Comparing Real Algebraic Numbers of Small Degree , 2004, ESA.
[10] Deok-Soo Kim,et al. Voronoi diagram of a circle set from Voronoi diagram of a point set: II. Geometry , 2001, Comput. Aided Geom. Des..
[11] François Anton,et al. Voronoi diagrams of semi-algebraic sets , 2003 .
[12] Ioannis Z. Emiris,et al. Real Solving of Bivariate Polynomial Systems , 2005, CASC.
[13] Jean-Daniel Boissonnat,et al. Sur la complexité combinatoire des cellules des diagrammes de Voronoï Euclidiens et des enveloppes convexes de sphères de , 2022 .
[14] Imma Boada,et al. Multiresolution Approximations of Generalized Voronoi Diagrams , 2004, International Conference on Computational Science.
[15] Chee Yap. On guaranteed accuracy computation , 2004 .
[16] Jean-Daniel Boissonnat,et al. Convex Hull and Voronoi Diagram of Additively Weighted Points , 2005, ESA.
[17] Wenping Wang,et al. An algebraic condition for the separation of two ellipsoids , 2001, Comput. Aided Geom. Des..
[18] Jean-Daniel Boissonnat,et al. A Linear Bound on the Complexity of the Delaunay Triangulation of Points on Polyhedral Surfaces , 2004, Discret. Comput. Geom..
[19] Otfried Cheong,et al. The Voronoi Diagram of Curved Objects , 1995, SCG '95.
[20] Mariette Yvinec,et al. The Voronoi Diagram of Planar Convex Objects , 2003, ESA.
[21] Bernard Mourrain,et al. SYNAPS: A library for symbolic-numeric computation , 2005 .
[22] Chee-Keng Yap,et al. Fundamental problems of algorithmic algebra , 1999 .
[23] Gershon Elber,et al. Precise Voronoi cell extraction of free-form rational planar closed curves , 2005, SPM '05.
[24] D. Anderson,et al. Algorithms for minimization without derivatives , 1974 .
[25] Laureano González-Vega,et al. A new approach to characterizing the relative position of two ellipses depending on one parameter , 2006, Comput. Aided Geom. Des..
[26] Ioannis Z. Emiris,et al. The predicates of the Apollonius diagram: Algorithmic analysis and implementation , 2006, Comput. Geom..
[27] Michel Pocchiola,et al. A sum of squares theorem for visibility , 2001, SCG '01.
[28] Luc Habert. Computing bitangents for ellipses , 2005, CCCG.
[29] Kurt Mehlhorn,et al. A Separation Bound for Real Algebraic Expressions , 2001, ESA.
[30] Kurt Mehlhorn,et al. Randomized Incremental Construction of Abstract Voronoi Diagrams , 1993, Comput. Geom..
[31] R. Brent. Table errata: Algorithms for minimization without derivatives (Prentice-Hall, Englewood Cliffs, N. J., 1973) , 1975 .
[32] David A. Cox,et al. Using Algebraic Geometry , 1998 .
[33] Kurt Mehlhorn,et al. A Separation Bound for Real Algebraic Expressions , 2001, Algorithmica.