Mitigation of SARS-CoV-2 transmission at a large public university

Sandeep Puthanveetil Satheesan | Brian R. Brauer | Zachary J. Weiner | Robert J. Jones | Fadi G. Alnaji | D. B. Young | N. J. Cohen | N. Goldenfeld | S. Martinis | Kenton McHenry | S. Maslov | A. Cangellaris | E. Tyburski | T. Killeen | R. Smith | A. Elbanna | J. Vozenilek | D. Kranz | A. Tkachenko | A. Pekosz | R. Holland | T. Fan | P. Hergenrother | Zhiru Liu | Mayank Garg | W. Sullivan | M. Burke | C. Brooke | H. Mostafa | E. Valera | R. Parker | Y. Manabe | G. Durack | J. Novakofski | Tong Wang | G. Wong | R. Ballard | R. Healy | Jeffrey S. Moore | Z. Weiner | Leyi Wang | Rashid Bashir | K. White | Catherine Best-Popescu | R. Fredrickson | M. Robinson | J. Black | Charles D Brackett | Joseph T. Walsh | B. Fouke | Awais Vaid | K. Green | A. Mirza | H. Christensen | James D. Quisenberry | Robert Kaler | Collin Pitts | K. Watson | M. Loots | April Edwards | K. Dohrer | Hantao Zhang | D. R. Ranoa | J. Uelmen | Julie A. Pryde | A. Simon | Andrew Miller | A. Conte | B. Gray | Mark Johnson | Patrick Kelly | J. Cooper | A. Murray | N. Gastala | J. Fleurimont | Stephen P. Bryan | N. Gallagher | J. Eardley | Melody Mumford | T. Eggett | Joseph D. Barnes | M. Conte | R. McGuffin | Wanda E. Ward | Sanjay J. Patel | J. M. Paul | Nickolas Vance | Joe Gulick | Isaac J. Galvan | Joe Grohens | Todd J. Nelson | M. P. Stevens | P. Hennessy | Edward Santos | Julie D. Steinman | Melvin R. Fenner | Kraig Wagenecht | Michael P DeLorenzo | Laura Wilhelm-Barr | Nathan C Wetter | J. Breitbarth | Charles N. Simpson | C. Harris | Allison C. Vance | Jodi L. Silotto | Patricia K. Anton | Lowa Mwilambwe | Deborah S. Stone | J. Lantz | G. Snyder | M. H. Lore | Dustin L. Yocum | Mark Band | Kayla M. Banks | Iuliana Bentea | Jeremy A Busch | Michael Curry | Delaney Foster | Scott A. Genung | Declan Glueck | Andrew Greta | Ashley Hetrick | Arianna A. Holterman | N. Ismail | Ian G Jasenof | Aaron Kielbasa | Teresa Kiesel | L. M. Kindle | Rhonda L. Lipking | Jade ́ Mayes | Jada Moseley | K. Munoz | Moira Nolan | Nil A. Parikh | Janna Pflugmacher | Janis Phillips | M. Potter | Janelle Rear | Edith Rosillo | Leslie N. Rye | M. Sherwood | Jamie M. Singson | Carly Skadden | Tina H. Skelton | Charlie Smith | M. Stech | Ryan Thomas | M. Tomaszewski | Scott Vanwingerden | E. Vlach | R. S. Watkins | D. R. Rañoa | M. Lore | Abigail R. Conte | Edward F. Santos | Patricia Anton | C. Best-Popescu | J. Steinman

[1]  D. McManus,et al.  Daily longitudinal sampling of SARS-CoV-2 infection reveals substantial heterogeneity in infectiousness , 2022, Nature Microbiology.

[2]  M. Gerstung,et al.  Estimation of the test to test distribution as a proxy for generation interval distribution for the Omicron variant in England , 2022, medRxiv.

[3]  P. Frazier,et al.  Modeling for COVID-19 college reopening decisions: Cornell, a case study , 2021, Proceedings of the National Academy of Sciences.

[4]  R. Lin,et al.  Virological and serological kinetics of SARS-CoV-2 Delta variant vaccine breakthrough infections: a multicentre cohort study , 2021, Clinical Microbiology and Infection.

[5]  Zeynep Tufekci,et al.  Airborne transmission of respiratory viruses , 2021, Science.

[6]  E. Lau,et al.  Transmission dynamics and epidemiological characteristics of Delta variant infections in China , 2021, medRxiv.

[7]  O. Pybus,et al.  Viral infection and transmission in a large, well-traced outbreak caused by the SARS-CoV-2 Delta variant , 2021, Nature communications.

[8]  T. Lash,et al.  A modeling study to inform screening and testing interventions for the control of SARS-CoV-2 on university campuses , 2021, Scientific Reports.

[9]  A. Goyal,et al.  Viral load and contact heterogeneity predict SARS-CoV-2 transmission and super-spreading events , 2021, eLife.

[10]  Sergei Maslov,et al.  Stochastic social behavior coupled to COVID-19 dynamics leads to waves, plateaus, and an endemic state , 2021, eLife.

[11]  N. Dendukuri,et al.  Comparison of Saliva and Nasopharyngeal Swab Nucleic Acid Amplification Testing for Detection of SARS-CoV-2: A Systematic Review and Meta-analysis. , 2021, JAMA internal medicine.

[12]  M. Biggerstaff,et al.  SARS-CoV-2 Transmission From People Without COVID-19 Symptoms , 2021, JAMA network open.

[13]  Sam Abbott,et al.  Practical considerations for measuring the effective reproductive number, Rt , 2020, PLoS computational biology.

[14]  Sang Woo Park,et al.  Awareness-driven behavior changes can shift the shape of epidemics away from peaks and toward plateaus, shoulders, and oscillations , 2020, Proceedings of the National Academy of Sciences of the United States of America.

[15]  C. Kalbaugh,et al.  Modelling the impact of presemester testing on COVID-19 outbreaks in university campuses , 2020, BMJ Open.

[16]  D. Larremore,et al.  Test sensitivity is secondary to frequency and turnaround time for COVID-19 screening , 2020, Science Advances.

[17]  M. Cevik,et al.  SARS-CoV-2, SARS-CoV, and MERS-CoV viral load dynamics, duration of viral shedding, and infectiousness: a systematic review and meta-analysis , 2020, The Lancet Microbe.

[18]  G. Blanchard-Rohner,et al.  Daily Viral Kinetics and Innate and Adaptive Immune Response Assessment in COVID-19: a Case Series , 2020, mSphere.

[19]  K. Carroll,et al.  Repeated Coronavirus Disease 2019 Molecular Testing: Correlation of Severe Acute Respiratory Syndrome Coronavirus 2 Culture With Molecular Assays and Cycle Thresholds , 2020, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[20]  D. Ho,et al.  Viral dynamics of acute SARS-CoV-2 infection and applications to diagnostic and public health strategies , 2020, PLoS biology.

[21]  C. Richmond,et al.  SARS-CoV-2 sequencing reveals rapid transmission from college student clusters resulting in morbidity and deaths in vulnerable populations , 2020, medRxiv.

[22]  A. Pettifor,et al.  Multiple COVID-19 Clusters on a University Campus — North Carolina, August 2020 , 2020, MMWR. Morbidity and mortality weekly report.

[23]  S. Maslov,et al.  Entry screening and multi-layer mitigation of COVID-19 cases for a safe university reopening , 2020, medRxiv.

[24]  N. Shental,et al.  Efficient high-throughput SARS-CoV-2 testing to detect asymptomatic carriers , 2020, Science Advances.

[25]  Elizabeth B White,et al.  Saliva or Nasopharyngeal Swab Specimens for Detection of SARS-CoV-2 , 2020, The New England journal of medicine.

[26]  Elizabeth B White,et al.  SalivaDirect: A simplified and flexible platform to enhance SARS-CoV-2 testing capacity , 2020, Med.

[27]  D. Chu,et al.  SARS-CoV-2 virus culture from the upper respiratory tract: Correlation with viral load, subgenomic viral RNA and duration of illness. , 2020, medRxiv.

[28]  L. Morawska,et al.  It Is Time to Address Airborne Transmission of Coronavirus Disease 2019 (COVID-19) , 2020, Clinical Infectious Diseases.

[29]  Rochelle P. Walensky,et al.  Assessment of SARS-CoV-2 Screening Strategies to Permit the Safe Reopening of College Campuses in the United States , 2020, JAMA network open.

[30]  Milind Tambe,et al.  Test sensitivity is secondary to frequency and turnaround time for COVID-19 surveillance , 2020, medRxiv : the preprint server for health sciences.

[31]  J. A. Hay,et al.  Test sensitivity is secondary to frequency and turnaround time for COVID-19 surveillance , 2020, medRxiv.

[32]  Martin D. Burke,et al.  Saliva-Based Molecular Testing for SARS-CoV-2 that Bypasses RNA Extraction , 2020, bioRxiv.

[33]  Philip T. Gressman,et al.  Simulating COVID-19 in a university environment , 2020, Mathematical Biosciences.

[34]  Sam Abbott,et al.  Estimating the time-varying reproduction number of SARS-CoV-2 using national and subnational case counts , 2020, Wellcome Open Research.

[35]  P. Hegyi,et al.  Saliva as a Candidate for COVID-19 Diagnostic Testing: A Meta-Analysis , 2020, Frontiers in Medicine.

[36]  Zachary Schiffman,et al.  Predicting infectious SARS-CoV-2 from diagnostic samples , 2020, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[37]  S. Konno,et al.  Comparison of SARS-CoV-2 detection in nasopharyngeal swab and saliva , 2020, Journal of Infection.

[38]  S. Sungkanuparph,et al.  Saliva sample as a non-invasive specimen for the diagnosis of coronavirus disease 2019: a cross-sectional study , 2020, Clinical Microbiology and Infection.

[39]  Xianbo Wu,et al.  Viral dynamics in asymptomatic patients with COVID-19 , 2020, International Journal of Infectious Diseases.

[40]  John T Brooks,et al.  Evidence Supporting Transmission of Severe Acute Respiratory Syndrome Coronavirus 2 While Presymptomatic or Asymptomatic , 2020, Emerging infectious diseases.

[41]  C. Batéjat,et al.  Heat inactivation of the severe acute respiratory syndrome coronavirus 2 , 2020, bioRxiv.

[42]  S. Ivanovski,et al.  Saliva—Friend and Foe in the COVID-19 Outbreak , 2020, Diagnostics.

[43]  A. Chawla,et al.  Rapid detection of SARS‐CoV‐2 in saliva: can an endodontist take the lead in point‐of‐care COVID‐19 testing? , 2020, International endodontic journal.

[44]  Eric Song,et al.  Saliva is more sensitive for SARS-CoV-2 detection in COVID-19 patients than nasopharyngeal swabs , 2020, medRxiv.

[45]  K. To,et al.  SARS‐CoV‐2: What can saliva tell us? , 2020, Oral diseases.

[46]  Tomer Hertz,et al.  Efficient high throughput SARS-CoV-2 testing to detect asymptomatic carriers , 2020, medRxiv.

[47]  Lidia Morawska,et al.  Estimation of airborne viral emission: Quanta emission rate of SARS-CoV-2 for infection risk assessment , 2020, Environment International.

[48]  Benjamin Cornwell,et al.  The Small-World Network of College Classes: Implications for Epidemic Spread on a University Campus , 2020 .

[49]  Ronghua Xu,et al.  Delivery of infection from asymptomatic carriers of COVID-19 in a familial cluster , 2020, International Journal of Infectious Diseases.

[50]  P. Vollmar,et al.  Virological assessment of hospitalized patients with COVID-2019 , 2020, Nature.

[51]  C. Faes,et al.  Estimating the generation interval for coronavirus disease (COVID-19) based on symptom onset data, March 2020 , 2020, Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin.

[52]  C. Whittaker,et al.  Estimates of the severity of coronavirus disease 2019: a model-based analysis , 2020, The Lancet Infectious Diseases.

[53]  A. Fomsgaard,et al.  An alternative workflow for molecular detection of SARS-CoV-2 – escape from the NA extraction kit-shortage, Copenhagen, Denmark, March 2020 , 2020, medRxiv.

[54]  Guohong Deng,et al.  Viral Kinetics and Antibody Responses in Patients with COVID-19 , 2020, medRxiv.

[55]  Eric H. Y. Lau,et al.  Temporal dynamics in viral shedding and transmissibility of COVID-19 , 2020, Nature Medicine.

[56]  Ruiyun Li,et al.  Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2) , 2020, Science.

[57]  Lucie Abeler-Dörner,et al.  Quantifying SARS-CoV-2 transmission suggests epidemic control with digital contact tracing , 2020, Science.

[58]  M. Delgado-Rodríguez,et al.  Systematic review and meta-analysis. , 2017, Medicina intensiva.

[59]  C. Fraser,et al.  A New Framework and Software to Estimate Time-Varying Reproduction Numbers During Epidemics , 2013, American journal of epidemiology.

[60]  Pedagógia,et al.  Cross Sectional Study , 2019 .

[61]  B. Preston,et al.  Case Series , 2010, Toxicologic pathology.

[62]  F. Schmidt Meta-Analysis , 2008 .

[63]  M. Lipsitch,et al.  How generation intervals shape the relationship between growth rates and reproductive numbers , 2007, Proceedings of the Royal Society B: Biological Sciences.

[64]  Patricia Cruz,et al.  Detection and enumeration of airborne biocontaminants. , 2004, Current opinion in biotechnology.

[65]  Michigan.,et al.  Toxicological profile for dichloropropenes , 2008 .