Robust control with finite frequency specification for uncertain discrete linear repetitive processes

This paper is dedicated to the study of robust stability and controller synthesis for discrete linear repetitive processes with polytopic uncertainty. In the robust control domain, conditions based on parameter dependent Lyapunov functions are proposed in order to reduce the conservatism related to uncertainty problems. The solution is a class of Lyapunov functions that depends in a polytopic way on the uncertain parameters and that can be derived from linear matrix inequality conditions. Nevertheless, in many cases in practice, the frequency range of reference signals, noises and disturbances are known beforehand. Therefore, performing controller synthesis in the full frequency range is not practically suited and may introduce conservatism to some extent. Based on generalized Kalman–Yakubovich–Popov Lemma, a finite frequency controller is derived for uncertain discrete linear repetitive processes which are the most investigated class of 2D systems. Hence, the designer can specify a frequency range where the prescribed control performance is required, where, for example, this range could be determined by inspection of frequency spectrums of the available signals.

[1]  J. Bernussou,et al.  A new robust D-stability condition for real convex polytopic uncertainty , 2000 .

[2]  A. T. Neto Parameter dependent Lyapunov functions for a class of uncertain linear systems: an LMI approach , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[3]  Anton Kummert,et al.  An approach to iterative learning control for spatio-temporal dynamics using nD discrete linear systems models , 2011, Multidimens. Syst. Signal Process..

[4]  D. H. Owens,et al.  Linear multipass processes: a two-dimensional interpretation , 1980 .

[5]  Wojciech Paszke,et al.  Design of robust iterative learning control schemes in a finite frequency range , 2011, The 2011 International Workshop on Multidimensional (nD) Systems.

[6]  Dimitri Peaucelle,et al.  Robust performance analysis with LMI-based methods for real parametric uncertainty via parameter-dependent Lyapunov functions , 2001, IEEE Trans. Autom. Control..

[7]  Olivier Bachelier,et al.  Robust root-clustering of a matrix in intersections or unions of regions: Addendum , 2004, Proceedings of the 44th IEEE Conference on Decision and Control.

[8]  Shinji Hara,et al.  Feedback control synthesis of multiple frequency domain specifications via generalized KYP lemma , 2007 .

[9]  Krzysztof Galkowski,et al.  Control Systems Theory and Applications for Linear Repetitive Processes - Recent Progress and Open Research Questions , 2007 .

[10]  Philippe Chevrel,et al.  Dilated LMI characterisations for linear time-invariant singular systems , 2010, Int. J. Control.

[11]  Ricardo C. L. F. Oliveira,et al.  Convergent LMI relaxations for robust analysis of uncertain linear systems using lifted polynomial parameter-dependent Lyapunov functions , 2008, Syst. Control. Lett..

[12]  A.G. Alleyne,et al.  A survey of iterative learning control , 2006, IEEE Control Systems.

[13]  Liu Hsu,et al.  LMI characterization of structural and robust stability , 1998 .

[14]  Olivier Bachelier,et al.  Robust Matrix Root-Clustering Analysis through Extended KYP Lemma , 2006, SIAM J. Control. Optim..

[15]  Pedro Luis Dias Peres,et al.  A less conservative LMI condition for the robust stability of discrete-time uncertain systems , 2001, Syst. Control. Lett..

[16]  Thomas S. Huang,et al.  Stability of two-dimensional recursive filters , 1972 .

[17]  L. Vandenberghe,et al.  Extended LMI characterizations for stability and performance of linear systems , 2009, Syst. Control. Lett..

[18]  O. Bachelier,et al.  Robust S-regularity of matrix pencils applied to the analysis of descriptor models , 2011 .

[19]  Laurent El Ghaoui,et al.  Advances in linear matrix inequality methods in control: advances in design and control , 1999 .

[20]  Peter Steffen,et al.  Numerical iterative methods and repetitive processes , 2012, Multidimens. Syst. Signal Process..

[21]  Wojciech Paszke,et al.  Repetitive process based iterative learning control design using frequency domain analysis , 2012, 2012 IEEE International Conference on Control Applications.

[22]  Krzysztof Galkowski,et al.  On the control of distributed parameter systems using a multidimensional systems setting , 2008 .

[23]  Shinji Hara,et al.  Generalized KYP lemma: unified frequency domain inequalities with design applications , 2005, IEEE Transactions on Automatic Control.

[24]  Jamal Daafouz,et al.  Parameter dependent Lyapunov functions for discrete time systems with time varying parametric uncertainties , 2001, Syst. Control. Lett..

[25]  P. Gahinet,et al.  Affine parameter-dependent Lyapunov functions and real parametric uncertainty , 1996, IEEE Trans. Autom. Control..

[26]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[27]  Wojciech Paszke,et al.  On the Kalman–Yakubovich–Popov lemma and the multidimensional models , 2008, Multidimens. Syst. Signal Process..

[28]  Graziano Chesi,et al.  Polynomially parameter-dependent Lyapunov functions for robust stability of polytopic systems: an LMI approach , 2005, IEEE Transactions on Automatic Control.

[29]  Wojciech Paszke,et al.  New robust stability and stabilization conditions for linear repetitive processes , 2009, 2009 International Workshop on Multidimensional (nD) Systems.

[30]  Ricardo C. L. F. Oliveira,et al.  LMI conditions for robust stability analysis based on polynomially parameter-dependent Lyapunov functions , 2006, Syst. Control. Lett..

[31]  Krzysztof Galkowski,et al.  Multi-machine operations modelled and controlled as switched linear repetitive processes , 2008, Int. J. Control.

[32]  T.-P. Azevedo-Perdicoúlis,et al.  Disturbance attenuation of linear quadratic OL-Nash games on repetitive processes with smoothing on the gas dynamics , 2012, Multidimens. Syst. Signal Process..

[33]  Ligang Wu,et al.  Mixed H2/H∞ approach to fault detection of discrete linear repetitive processes , 2011, J. Frankl. Inst..

[34]  Mohammed Alfidi,et al.  LMI Conditions for Robust Stability of 2D Linear Discrete-Time Systems , 2008 .

[35]  M Maarten Steinbuch,et al.  Dissipative stability theory for linear repetitive processes with application in iterative learning control , 2009 .

[36]  P. Gahinet,et al.  A linear matrix inequality approach to H∞ control , 1994 .

[37]  J. Geromel,et al.  A new discrete-time robust stability condition , 1999 .

[38]  Graziano Chesi,et al.  Robust stability of time-varying polytopic systems via parameter-dependent homogeneous Lyapunov functions , 2007, Autom..