Industrial Ecology Approaches to Improve Metal Management : Three Modeling Experiments

A linear model of consumption − produce-use-dispose − has constantly increased the pressure on the environment in recent decades. There has been a great belief that technology will solve the proble ...

[1]  Igor Nikolic,et al.  Growing cradle-to-cradle metal flow systems: An application of agent-based modeling and system dynamics to the study of global flows of metals in mobile phones , 2010 .

[2]  John R. Ehrenfeld,et al.  Can Industrial Ecology be the “Science of Sustainability”? , 2004 .

[3]  Saadi Lahlou System innovation for sustainability 4 , 2010 .

[4]  Lars Håkanson,et al.  Suspended Particulate Matter in Lakes, Rivers, and Marine Systems , 2006 .

[5]  D. Reider,et al.  Leverage Points: Places to Intervene in a System , 2012 .

[6]  C. Davis,et al.  Industrial Ecology 2.0 , 2010 .

[7]  Igor Nikolic,et al.  Modeling Metal Flow Systems , 2012 .

[8]  L. Sörme,et al.  Sources of heavy metals in urban wastewater in Stockholm. , 2002, The Science of the total environment.

[9]  Walter Klöpffer,et al.  Analytical tools for environmental design and management in a systems perspective , 2012 .

[10]  Jagdeep Singh Towards a Sustainable Resource Management: A Broader Systems Approach to Product Design and Waste Management , 2013 .

[11]  Björn Frostell,et al.  Life Cycle Thinking for Improved Resource Management: LCA or? , 2013 .

[12]  Ulrich Kral,et al.  Sustainable resource use requires “clean cycles” and safe “final sinks” , 2013, The Science of the total environment.

[13]  Björn Frostell,et al.  Group Model-Building to identify potential sources of environmental impacts outside the scope of LCA studies , 2014 .

[14]  Niu Shuwen,et al.  Impact Study on Human Activity to the Resource-environment Based on the Consumption Level Difference of China's Provinces or Autonomous Regions , 2008 .

[15]  R. Weterings,et al.  Environmental indicators: Typology and overview , 1999 .

[16]  Yuichi Moriguchi,et al.  Proposal of six indicators of material cycles for describing society's metabolism: from the viewpoint of material flow analysis , 2004 .

[17]  C K Patel,et al.  Industrial ecology. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Claudia R. Binder,et al.  From material flow analysis to material flow management Part I: social sciences modeling approaches coupled to MFA , 2007 .

[19]  U. Tischner,et al.  Sustainable electronic product design , 2012 .

[20]  W. Pasmore,et al.  Sociotechnical Systems: A North American Reflection on Empirical Studies of the Seventies , 1982 .

[21]  Sunil Herat,et al.  E-waste: a problem or an opportunity? Review of issues, challenges and solutions in Asian countries , 2012, Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA.

[22]  R. Agarwal,et al.  Strengthening Industrial Ecology's Links with Business Studies: Insights and Potential Contributions from the Innovation and Business Models Literature , 2014 .

[23]  L. Håkanson Internal loading: A new solution to an old problem in aquatic sciences , 2004 .

[24]  F. Geels Technological transitions as evolutionary reconfiguration processes: a multi-level perspective and a case-study , 2002 .

[25]  Bo Bergbäck,et al.  Utility of Substance Stock and Flow Studies , 2009 .

[26]  G. Dijkema,et al.  Complexity and Industrial Ecology , 2009 .

[27]  Barry Ness,et al.  Structuring problems in sustainability science: The multi-level DPSIR framework , 2010 .

[28]  Joe Ravetz,et al.  Integrated assessment for sustainability appraisal in cities and regions , 2000 .

[29]  Frank W. Geels,et al.  A socio-technical analysis of low-carbon transitions: introducing the multi-level perspective into transport studies , 2012 .

[30]  Andreas Breiter,et al.  Assessing the side-effects of ICT development: E-waste production and management: A case study about cell phone end-of-life in Manado, Indonesia , 2013 .

[31]  J Swanson,et al.  Business Dynamics—Systems Thinking and Modeling for a Complex World , 2002, J. Oper. Res. Soc..

[32]  R. Kuehr,et al.  Global e-waste initiatives , 2012 .

[33]  Tuomo Saloranta,et al.  A conceptual framework for identifying the need and role of models in the implementation of the water framework directive , 2003 .

[34]  Helmut Haberl,et al.  Sustainable development: socio‐economic metabolism and colonization of nature , 1998 .

[35]  S. Solomon,et al.  Irreversible climate change due to carbon dioxide emissions , 2009, Proceedings of the National Academy of Sciences.

[36]  Xingqiang Song A Pressure-oriented Approach to Water Management , 2012 .

[37]  Rafael Laurenti,et al.  Applications of Systems Thinking within the Sustainability Domain : Product Design, Product Systems and Stakeholder Perspectives , 2013 .

[38]  C W Clegg,et al.  Sociotechnical principles for system design. , 2000, Applied ergonomics.

[39]  N. E. Gallopoulos,et al.  Strategies for Manufacturing , 1989 .

[40]  Robert U. Ayres,et al.  A Handbook of Industrial Ecology , 2002 .

[41]  John R. Ehrenfeld,et al.  Would Industrial Ecology Exist without Sustainability in the Background? , 2007 .

[42]  S. A. Peterson,et al.  LAKE RESTORATION BY SEDIMENT REMOVAL , 1982 .

[43]  A. Hoffman,et al.  Flourishing: A Frank Conversation About Sustainability , 2013 .

[44]  John R. Ehrenfeld,et al.  Industrial ecology: a new field or only a metaphor? , 2004 .

[45]  L. Codispoti The limits to growth , 1997, Nature.

[46]  Magnus Bengtsson,et al.  Linking Informal and Formal Electronics Recycling via an Interface Organization , 2013 .

[47]  Ruud Kempener,et al.  The Dynamics of Regions and Networks in Industrial Ecosystems , 2009 .

[48]  R. Sinha Modelling Copper Sources and Fate in Lake Råcksta Träsk, Stockholm : Sediment Copper Content as Indicator of Urban Metal Emissions , 2009 .

[49]  M. Fischer-Kowalski,et al.  Society's Metabolism , 1998 .

[50]  Claudia R. Binder,et al.  From material flow analysis to material flow management Part II: the role of structural agent analysis , 2007 .

[51]  H. Weisz,et al.  Methodology and Indicators of Economy‐wide Material Flow Accounting , 2011 .

[52]  Brynhildur Davidsdottir,et al.  Changing stocks, flows and behaviors in industrial ecosystems , 2008 .

[53]  F. Preston,et al.  A Global Redesign? Shaping the Circular Economy , 2012 .

[54]  Dale S. Rothman,et al.  Discursive biases of the environmental research framework DPSIR , 2008 .

[55]  P. Brunner Materials Flow Analysis and the Ultimate Sink , 2004 .

[56]  Dennis L. Meadows,et al.  Limits to growth : the 30-year update , 2004 .

[57]  Edward R. Carr,et al.  Applying DPSIR to sustainable development , 2007 .

[58]  Anna Björklund,et al.  Social Life Cycle Inventory and Impact Assessment of Informal recycling of Electronic ICT Waste in Pakistan , 2013 .

[59]  Y. Geng,et al.  Developing the circular economy in China: Challenges and opportunities for achieving 'leapfrog development' , 2008 .

[60]  B. Frostell,et al.  The DPSIR Framework and a Pressure-Oriented Water Quality Monitoring Approach to Ecological River Restoration , 2012 .

[61]  Chris W. Clegg,et al.  Advancing socio-technical systems thinking: a call for bravery. , 2014, Applied ergonomics.

[62]  F. Geels Technological Transitions And System Innovations: A Co-evolutionary And Socio-technical Analysis , 2005 .

[63]  Tim Jackson,et al.  Prosperity without Growth: Economics for a Finite Planet , 2011 .