Polynomial size proofs of the propositional pigeonhole principle

Cook and Reckhow proved in 1979 that the propositional pigeonhole principle has polynomial size extended Frege proofs. Buss proved in 1987 that it also has polynomial size Frege proofs; these Frege proofs used a completely different proof method based on counting. This paper shows that the original Cook and Reckhow extended Frege proofs can be formulated as quasipolynomial size Frege proofs. The key point is that st-connectivity can be used to define the Cook-Reckhow construction.

[1]  Samuel R. Buss,et al.  Propositional proofs and reductions between NP search problems , 2012, Ann. Pure Appl. Log..

[2]  G. S. Tseitin On the Complexity of Derivation in Propositional Calculus , 1983 .

[3]  Toniann Pitassi,et al.  Propositional Proof Complexity: Past, Present and Future , 2001, Bull. EATCS.

[4]  Samuel R. Buss,et al.  Annals of Pure and Applied Logic , 2022 .

[5]  C. Papadimitriou,et al.  The Complexity of Computing a , 2009 .

[6]  Samuel R. Buss,et al.  Are there Hard Examples for Frege Systems , 1995 .

[7]  Fabio Gadducci,et al.  A General Theory of Barbs, Contexts, and Labels , 2014, TOCL.

[8]  A. Yao Separating the polynomial-time hierarchy by oracles , 1985 .

[9]  Samuel R. Buss,et al.  Propositional Proof Complexity An Introduction , 1999 .

[10]  Toshiyasu Arai,et al.  Polynomal-size Frege proofs of Bollobás’ theorem on the trace of sets , 2008 .

[11]  Iddo Tzameret,et al.  Short proofs for the determinant identities , 2012, STOC '12.

[12]  Samuel R. Buss Polynomial Size Proofs of the Propositional Pigeonhole Principle , 1987, J. Symb. Log..

[13]  Nathan Segerlind,et al.  The Complexity of Propositional Proofs , 2007, Bull. Symb. Log..

[14]  Toniann Pitassi,et al.  A new proof of the weak pigeonhole principle , 2000, STOC '00.

[15]  Phuong Nguyen,et al.  The provably total NP search problems of weak second order bounded arithmetic , 2011, Ann. Pure Appl. Log..

[16]  外史 竹内 Bounded Arithmetic と計算量の根本問題 , 1996 .

[17]  S. Shelah,et al.  Annals of Pure and Applied Logic , 1991 .

[18]  Michael Sipser,et al.  Parity, circuits, and the polynomial-time hierarchy , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[19]  Iddo Tzameret,et al.  Short Proofs for the Determinant Identities , 2015, SIAM J. Comput..

[20]  Samuel R. Buss,et al.  Improved witnessing and local improvement principles for second-order bounded arithmetic , 2014, ACM Trans. Comput. Log..

[21]  Gabriel Istrate,et al.  Proof Complexity and the Kneser-Lovász Theorem , 2014, SAT.

[22]  Peter Frankl,et al.  On the Trace of Finite Sets , 1983, J. Comb. Theory, Ser. A.

[23]  Alasdair Urquhart,et al.  Formal Languages]: Mathematical Logic--mechanical theorem proving , 2022 .

[24]  Samuel R. Buss,et al.  QUASIPOLYNOMIAL SIZE FREGE PROOFS OF FRANKL’S THEOREM ON THE TRACE OF SETS , 2016, The Journal of Symbolic Logic.

[25]  Jeff B. Paris,et al.  Provability of the Pigeonhole Principle and the Existence of Infinitely Many Primes , 1988, J. Symb. Log..

[26]  Stephen A. Cook,et al.  The Relative Efficiency of Propositional Proof Systems , 1979, Journal of Symbolic Logic.

[27]  Christos H. Papadimitriou,et al.  On the Complexity of the Parity Argument and Other Inefficient Proofs of Existence , 1994, J. Comput. Syst. Sci..

[28]  Armin Haken,et al.  The Intractability of Resolution , 1985, Theor. Comput. Sci..