Isogeometric analysis with Powell–Sabin splines for advection–diffusion–reaction problems
暂无分享,去创建一个
Hendrik Speleers | Carla Manni | Francesca Pelosi | H. Speleers | C. Manni | F. Pelosi | M. Sampoli | M. Lucia Sampoli
[1] Hendrik Speleers,et al. Numerical solution of partial differential equations with Powell-Sabin splines , 2006 .
[2] Hendrik Speleers,et al. Weight control for modelling with NURPS surfaces , 2007, Comput. Aided Geom. Des..
[3] Paul Sablonnière,et al. Error Bounds for Hermite Interpolation by Quadratic Splines on an α-Triangulation , 1987 .
[4] John A. Evans,et al. Isogeometric analysis using T-splines , 2010 .
[5] T. Hughes,et al. Efficient quadrature for NURBS-based isogeometric analysis , 2010 .
[6] Hendrik Speleers,et al. Quasi-hierarchical Powell-Sabin B-splines , 2009, Comput. Aided Geom. Des..
[7] M. Rivara. Algorithms for refining triangular grids suitable for adaptive and multigrid techniques , 1984 .
[8] Carla Manni,et al. Quadratic spline quasi-interpolants on Powell-Sabin partitions , 2007, Adv. Comput. Math..
[9] Carla Manni,et al. Isogeometric analysis in advection-diffusion problems: Tension splines approximation , 2011, J. Comput. Appl. Math..
[10] Annalisa Buffa,et al. Characterization of T-splines with reduced continuity order on T-meshes , 2012 .
[11] Charles K. Chui,et al. Multivariate vertex splines and finite elements , 1990 .
[12] B. Simeon,et al. A hierarchical approach to adaptive local refinement in isogeometric analysis , 2011 .
[13] Hendrik Speleers,et al. A normalized basis for quintic Powell-Sabin splines , 2010, Comput. Aided Geom. Des..
[14] Piet Hemker. A singularly perturbed model problem for numerical computation , 1996 .
[15] Paul Dierckx,et al. On calculating normalized Powell-Sabin B-splines , 1997, Comput. Aided Geom. Des..
[16] Hendrik Speleers,et al. On the Local Approximation Power of Quasi-Hierarchical Powell-Sabin Splines , 2008, MMCS.
[17] B. Simeon,et al. Adaptive isogeometric analysis by local h-refinement with T-splines , 2010 .
[18] Larry L. Schumaker,et al. Macro-elements and stable local bases for splines on Powell-Sabin triangulations , 2003, Math. Comput..
[19] Paul Dierckx,et al. Algorithms for surface fitting using Powell-Sabin splines , 1992 .
[20] Rüdiger Verfürth,et al. Robust A Posteriori Error Estimates for Stationary Convection-Diffusion Equations , 2005, SIAM J. Numer. Anal..
[21] Gert Lube,et al. Residual-based stabilized higher-order FEM for advection-dominated problems , 2006 .
[22] Ricardo Baeza-Yates,et al. Computer Science 2 , 1994 .
[23] Rüdiger Verfürth. A posteriori error estimators for convection-diffusion equations , 1998, Numerische Mathematik.
[24] T. Hughes,et al. Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .
[25] T. Hughes,et al. Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .
[26] Arif Masud,et al. Revisiting stabilized finite element methods for the advective–diffusive equation , 2006 .
[27] A. Quarteroni. Numerical Models for Differential Problems , 2009 .
[28] Volker John,et al. A numerical study of a posteriori error estimators for convection–diffusion equations , 2000 .
[29] Hendrik Speleers,et al. Construction of Normalized B-Splines for a Family of Smooth Spline Spaces Over Powell–Sabin Triangulations , 2013 .
[30] Josef Hoschek,et al. Fundamentals of computer aided geometric design , 1996 .
[31] Malcolm A. Sabin,et al. Piecewise Quadratic Approximations on Triangles , 1977, TOMS.
[32] Adhemar Bultheel,et al. On the choice of the PS-triangles , 2003 .
[33] Hendrik Speleers,et al. Powell-Sabin splines with boundary conditions for polygonal and non-polygonal domains , 2007 .