Isogeometric analysis with Powell–Sabin splines for advection–diffusion–reaction problems

Abstract This paper presents the use of Powell–Sabin splines in the context of isogeometric analysis for the numerical solution of advection–diffusion–reaction equations. Powell–Sabin splines are piecewise quadratic C 1 functions defined on a given triangulation with a particular macro-structure. We discuss the Galerkin discretization based on a normalized Powell–Sabin B-spline basis. We focus on the accurate detection of internal and boundary layers, and on local refinements. We apply the approach to several test problems, and we illustrate its effectiveness by a comparison with classical finite element and recent isogeometric analysis procedures.

[1]  Hendrik Speleers,et al.  Numerical solution of partial differential equations with Powell-Sabin splines , 2006 .

[2]  Hendrik Speleers,et al.  Weight control for modelling with NURPS surfaces , 2007, Comput. Aided Geom. Des..

[3]  Paul Sablonnière,et al.  Error Bounds for Hermite Interpolation by Quadratic Splines on an α-Triangulation , 1987 .

[4]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[5]  T. Hughes,et al.  Efficient quadrature for NURBS-based isogeometric analysis , 2010 .

[6]  Hendrik Speleers,et al.  Quasi-hierarchical Powell-Sabin B-splines , 2009, Comput. Aided Geom. Des..

[7]  M. Rivara Algorithms for refining triangular grids suitable for adaptive and multigrid techniques , 1984 .

[8]  Carla Manni,et al.  Quadratic spline quasi-interpolants on Powell-Sabin partitions , 2007, Adv. Comput. Math..

[9]  Carla Manni,et al.  Isogeometric analysis in advection-diffusion problems: Tension splines approximation , 2011, J. Comput. Appl. Math..

[10]  Annalisa Buffa,et al.  Characterization of T-splines with reduced continuity order on T-meshes , 2012 .

[11]  Charles K. Chui,et al.  Multivariate vertex splines and finite elements , 1990 .

[12]  B. Simeon,et al.  A hierarchical approach to adaptive local refinement in isogeometric analysis , 2011 .

[13]  Hendrik Speleers,et al.  A normalized basis for quintic Powell-Sabin splines , 2010, Comput. Aided Geom. Des..

[14]  Piet Hemker A singularly perturbed model problem for numerical computation , 1996 .

[15]  Paul Dierckx,et al.  On calculating normalized Powell-Sabin B-splines , 1997, Comput. Aided Geom. Des..

[16]  Hendrik Speleers,et al.  On the Local Approximation Power of Quasi-Hierarchical Powell-Sabin Splines , 2008, MMCS.

[17]  B. Simeon,et al.  Adaptive isogeometric analysis by local h-refinement with T-splines , 2010 .

[18]  Larry L. Schumaker,et al.  Macro-elements and stable local bases for splines on Powell-Sabin triangulations , 2003, Math. Comput..

[19]  Paul Dierckx,et al.  Algorithms for surface fitting using Powell-Sabin splines , 1992 .

[20]  Rüdiger Verfürth,et al.  Robust A Posteriori Error Estimates for Stationary Convection-Diffusion Equations , 2005, SIAM J. Numer. Anal..

[21]  Gert Lube,et al.  Residual-based stabilized higher-order FEM for advection-dominated problems , 2006 .

[22]  Ricardo Baeza-Yates,et al.  Computer Science 2 , 1994 .

[23]  Rüdiger Verfürth A posteriori error estimators for convection-diffusion equations , 1998, Numerische Mathematik.

[24]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[25]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[26]  Arif Masud,et al.  Revisiting stabilized finite element methods for the advective–diffusive equation , 2006 .

[27]  A. Quarteroni Numerical Models for Differential Problems , 2009 .

[28]  Volker John,et al.  A numerical study of a posteriori error estimators for convection–diffusion equations , 2000 .

[29]  Hendrik Speleers,et al.  Construction of Normalized B-Splines for a Family of Smooth Spline Spaces Over Powell–Sabin Triangulations , 2013 .

[30]  Josef Hoschek,et al.  Fundamentals of computer aided geometric design , 1996 .

[31]  Malcolm A. Sabin,et al.  Piecewise Quadratic Approximations on Triangles , 1977, TOMS.

[32]  Adhemar Bultheel,et al.  On the choice of the PS-triangles , 2003 .

[33]  Hendrik Speleers,et al.  Powell-Sabin splines with boundary conditions for polygonal and non-polygonal domains , 2007 .