Ultrafine-grained surface layer on Mg–Al–Zn alloy produced by cryogenic burnishing for enhanced corrosion resistance

[1]  R. Reed-hill,et al.  The crystallographic characteristics of fracture in magnesium single crystals , 1957 .

[2]  Zushu Hu,et al.  Evolution of dislocation structure induced by cyclic deformation in a directionally solidified cobalt base superalloy , 1999 .

[3]  Adel Mahmood Hassan,et al.  Improvement in the wear resistance of brass components by the ball burnishing process , 1999 .

[4]  Jian Lu,et al.  An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment , 2002 .

[5]  Dongyang Li,et al.  Mechanical, electrochemical and tribological properties of nano-crystalline surface of 304 stainless steel , 2003 .

[6]  Shyong Lee,et al.  Grain refining of magnesium alloy AZ31 by rolling , 2003 .

[7]  J. C. Huang,et al.  Relationship between grain size and Zener¿Holloman parameter during friction stir processing in AZ31 Mg alloys , 2004 .

[8]  G. Song Recent Progress in Corrosion and Protection of Magnesium Alloys , 2005 .

[9]  Ping Zhang,et al.  Effect of roller burnishing on the high cycle fatigue performance of the high-strength wrought magnesium alloy AZ80 , 2005 .

[10]  P. Liaw,et al.  Enhanced fatigue resistance of a nickel-based hastelloy induced by a surface nanocrystallization and hardening process , 2005 .

[11]  Surface nanocrystallization induced by shot peening and its effect on corrosion resistance of 1Cr18Ni9Ti stainless steel , 2006 .

[12]  A. Zarei‐Hanzaki,et al.  Dynamic recrystallization in AZ31 magnesium alloy , 2007 .

[13]  Mingxing Zhang,et al.  Plastic strain-induced grain refinement in the nanometer scale in a Mg alloy , 2007 .

[14]  J. C. Huang,et al.  Achieving ultrafine grain size in Mg–Al–Zn alloy by friction stir processing , 2007 .

[15]  G. Song,et al.  The Effect of Pre‐Processing and Grain Structure on the Bio‐Corrosion and Fatigue Resistance of Magnesium Alloy AZ31 , 2007 .

[16]  K. Lu,et al.  Fabrication of a gradient nano-micro-structured surface layer on bulk copper by means of a surface mechanical grinding treatment , 2008 .

[17]  G. Song,et al.  The effect of crystallographic orientation on the active corrosion of pure magnesium , 2008 .

[18]  Frank Witte,et al.  Degradable biomaterials based on magnesium corrosion , 2008 .

[19]  Ke Lu,et al.  Surface Nanocrystallization (SNC) of Metallic Materials-Presentation of the Concept behind a New Approach , 2009 .

[20]  G. Song,et al.  The surface, microstructure and corrosion of magnesium alloy AZ31 sheet , 2010 .

[21]  M. Escudero,et al.  Corrosion behaviour of AZ31 magnesium alloy with different grain sizes in simulated biological fluids. , 2010, Acta biomaterialia.

[22]  H. Fraser,et al.  Grain character influences on corrosion of ECAPed pure magnesium , 2010 .

[23]  T. Balusamy,et al.  Effect of surface nanocrystallization on the corrosion behaviour of AISI 409 stainless steel , 2010 .

[24]  G. Song,et al.  Crystallographic orientation and electrochemical activity of AZ31 Mg alloy , 2010 .

[25]  N. Birbilis,et al.  Revealing the relationship between grain size and corrosion rate of metals , 2010 .