Causal evolution of spin networks

[1]  S. Hawking,et al.  General Relativity; an Einstein Centenary Survey , 1979 .

[2]  G. Hooft Quantum Gravity: A Fundamental Problem and Some Radical Ideas , 1979 .

[3]  A. Trias,et al.  Geometrical origin of gauge theories , 1981 .

[4]  H. Janssen,et al.  On the nonequilibrium phase transition in reaction-diffusion systems with an absorbing stationary state , 1981 .

[5]  L. Smolin A fixed point for quantum gravity , 1982 .

[6]  Peter Grassberger,et al.  On phase transitions in Schlögl's second model , 1982 .

[7]  F. Nori,et al.  Loop-space quantum formulation of free electromagnetism , 1983 .

[8]  A. Trias,et al.  Analytic Approach to Phase Transitions in Lattice Gauge Theories , 1984 .

[9]  L. Smolin,et al.  Space-time foam as the universal regulator , 1985 .

[10]  A. Trias,et al.  Gauge dynamics in the C-representation , 1986 .

[11]  L. Smolin,et al.  Renormalization of general relativity on a background of spacetime foam , 1986 .

[12]  A. Ashtekar,et al.  New variables for classical and quantum gravity. , 1986, Physical review letters.

[13]  Bombelli,et al.  Space-time as a causal set. , 1987, Physical review letters.

[14]  A. Ashtekar,et al.  New Hamiltonian formulation of general relativity. , 1987, Physical review. D, Particles and fields.

[15]  Carlo Rovelli,et al.  Loop space representation of quantum general relativity , 1988 .

[16]  L. Smolin,et al.  Nonperturbative quantum geometries , 1988 .

[17]  Rovelli,et al.  Knot theory and quantum gravity. , 1988, Physical review letters.

[18]  Leal,et al.  Loop calculus for lattice gauge theories. , 1989, Physical review. D, Particles and fields.

[19]  Null-strut calculus. I. Kinematics. , 1990, Physical review. D, Particles and fields.

[20]  Null-strut calculus. II. Dynamics. , 1990, Physical review. D, Particles and fields.

[21]  R. Gambini Loop space representation of quantum general relativity and the group of loops , 1991 .

[22]  Ashtekar formulation of general relativity and loop space nonperturbative quantum gravity: A Report , 1991 .

[23]  The physical Hamiltonian in nonperturbative quantum gravity. , 1993, Physical review letters.

[24]  Four‐dimensional topological quantum field theory, Hopf categories, and the canonical bases , 1994, hep-th/9405183.

[25]  ON ALGEBRAIC STRUCTURES IMPLICIT IN TOPOLOGICAL QUANTUM FIELD THEORIES , 1994, hep-th/9412025.

[26]  Peter Grassberger,et al.  Are damage spreading transitions generically in the universality class of directed percolation? , 1994, cond-mat/9409068.

[27]  Cosmology as a problem in critical phenomena , 1995, gr-qc/9505022.

[28]  Volume operator in discretized quantum gravity. , 1995, Physical review letters.

[29]  Rovelli,et al.  Spin networks and quantum gravity. , 1995, Physical review. D, Particles and fields.

[30]  Carlo Rovelli,et al.  Discreteness of area and volume in quantum gravity [Nucl. Phys. B 442 (1995) 593] , 1994, gr-qc/9411005.

[31]  The geometry of quantum spin networks , 1995, gr-qc/9512043.

[32]  The complete spectrum of the area from recoupling theory in loop quantum gravity , 1996, gr-qc/9608043.

[33]  Quantization of Space and Time in 3 and in 4 Space-time Dimensions , 1996, gr-qc/9608037.

[34]  Self-organized critical directed percolation , 1996, adap-org/9601004.

[35]  THE SCATTERING MATRIX APPROACH FOR THE QUANTUM BLACK HOLE: AN OVERVIEW , 1996, gr-qc/9607022.

[36]  Geometry eigenvalues and the scalar product from recoupling theory in loop quantum gravity. , 1996, Physical review. D, Particles and fields.

[37]  Carlo Rovelli,et al.  'Sum over surfaces' form of loop quantum gravity , 1997 .

[38]  Volume and quantizations , 1996, gr-qc/9602035.

[39]  Fotini Markopoulou Dual formulation of spin network evolution , 1997 .

[40]  Graphical evolution of spin network states , 1996, gr-qc/9606013.

[41]  Closed formula for the matrix elements of the volume operator in canonical quantum gravity , 1996, gr-qc/9606091.