Radiometric Compensation through Inverse Light Transport

Radiometric compensation techniques allow seamless projections onto complex everyday surfaces. Implemented with projector-camera systems they support the presentation of visual content in situations where projection-optimized screens are not available or not desired - as in museums, historic sites, air-plane cabins, or stage performances. We propose a novel approach that employs the full light transport between projectors and a camera to account for many illumination aspects, such as interreflections, refractions, shadows, and defocus. Precomputing the inverse light transport in combination with an efficient implementation on the GPU makes the real-time compensation of captured local and global light modulations possible.

[1]  Shree K. Nayar,et al.  A projector-camera system with real-time photometric adaptation for dynamic environments , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[2]  Gordon Wetzstein,et al.  The visual computing of projector-camera systems , 2008, SIGGRAPH '08.

[3]  Mark Ashdown,et al.  Robust Content-Dependent Photometric Projector Compensation , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[4]  Oliver Bimber,et al.  Compensating Indirect Scattering for Immersive and Semi-Immersive Projection Displays , 2006, IEEE Virtual Reality Conference (VR 2006).

[5]  W. Brent Seales,et al.  Dynamic shadow removal from front projection displays , 2001, Proceedings Visualization, 2001. VIS '01..

[6]  Michael S. Brown,et al.  Image Pre-Conditioning for Out-of-Focus Projector Blur , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[7]  Gordon Wetzstein,et al.  The Visual Computing of Projector‐Camera Systems , 2008, SIGGRAPH '08.

[8]  Oliver Bimber,et al.  Embedded entertainment with smart projectors , 2005, Computer.

[9]  Hideo Saito,et al.  Focal Pre-Correction of Projected Image for Deblurring Screen Image , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[10]  Oliver Bimber,et al.  Multifocal projection: a multiprojector technique for increasing focal depth , 2006, IEEE Transactions on Visualization and Computer Graphics.

[11]  Ruigang Yang,et al.  Camera-based calibration techniques for seamless multiprojector displays , 2005, IEEE Transactions on Visualization and Computer Graphics.

[12]  Gordon Wetzstein,et al.  Radiometric compensation of global illumination effects with projector-camera systems , 2006, SIGGRAPH '06.

[13]  David Salesin,et al.  Environment matting and compositing , 1999, SIGGRAPH.

[14]  Marc Levoy,et al.  Symmetric photography: exploiting data-sparseness in reflectance fields , 2006, EGSR '06.

[15]  H. Seidel,et al.  DISCO: acquisition of translucent objects , 2004, ACM Trans. Graph..

[16]  Christian Bräuer-Burchardt,et al.  Inter-Reflection Compensation for Immersive Projection Display (Poster) Hitoshi Habe, Nobuo Saeki, Takashi Matsuyama Analysis of Light Transport based on the Separation of Direct and Indirect Components (Poster) , 2007 .

[17]  Steve Marschner,et al.  Dual photography , 2005, ACM Trans. Graph..

[18]  Marc Levoy,et al.  Synthetic aperture confocal imaging , 2004, ACM Trans. Graph..

[19]  Marc Levoy,et al.  Light field rendering , 1996, SIGGRAPH.

[20]  Michael S. Brown,et al.  Practical Multi-Projector Display Design , 2007 .

[21]  Pieter Peers,et al.  A compact factored representation of heterogeneous subsurface scattering , 2006, ACM Trans. Graph..

[22]  Jong-Il Park,et al.  Specularity-Free Projection on Nonplanar Surface , 2005, PCM.

[23]  Shree K. Nayar,et al.  A Projection System with Radiometric Compensation for Screen Imperfections , 2003 .

[24]  Pieter Peers,et al.  Relighting with 4D incident light fields , 2003, ACM Trans. Graph..

[25]  Shree K. Nayar,et al.  Projection defocus analysis for scene capture and image display , 2006, SIGGRAPH 2006.

[26]  Ramesh Raskar,et al.  Fast separation of direct and global components of a scene using high frequency illumination , 2006, SIGGRAPH 2006.

[27]  Paul E. Debevec,et al.  Acquiring the reflectance field of a human face , 2000, SIGGRAPH.

[28]  Christopher O. Jaynes,et al.  Camera-based detection and removal of shadows from interactive multiprojector displays , 2004, IEEE Transactions on Visualization and Computer Graphics.

[29]  Karl vom Berge,et al.  A compact factored representation of heterogeneous subsurface scattering , 2006, SIGGRAPH 2006.

[30]  Gordon Wetzstein,et al.  Enabling view-dependent stereoscopic projection in real environments , 2005, SIGGRAPH '05.

[31]  Takahiro Okabe,et al.  Radiometric Compensation in a Projector-Camera System Based Properties of Human Vision System , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) - Workshops.

[32]  Li Zhang,et al.  Projection defocus analysis for scene capture and image display , 2006, ACM Trans. Graph..

[33]  Oliver Bimber,et al.  Real-Time Adaptive Radiometric Compensation , 2006, IEEE Transactions on Visualization and Computer Graphics.

[34]  Kiriakos N. Kutulakos,et al.  A theory of inverse light transport , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[35]  Pieter Peers,et al.  Wavelet Environment matting , 2003, Rendering Techniques.

[36]  Gita Reese Sukthankar,et al.  Dynamic shadow elimination for multi-projector displays , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.