On Regular Hypergraphs of High Girth

We give lower bounds on the maximum possible girth of an $r$-uniform, $d$-regular hypergraph with at most $n$ vertices, using the definition of a hypergraph cycle due to Berge. These differ from the trivial upper bound by an absolute constant factor (viz., by a factor of between $3/2+o(1)$ and $2 +o(1)$). We also define a random $r$-uniform `Cayley' hypergraph on $S_n$ which has girth $\Omega (n^{1/3})$ with high probability, in contrast to random regular $r$-uniform hypergraphs, which have constant girth with positive probability.

[1]  Richard A. Duke Types of Cycles in Hypergraphs , 1985 .

[2]  M. Murty Ramanujan Graphs , 1965 .

[3]  H. Sachs,et al.  Regukre Graphen gegebener Taillenweite mit minimaler Knotenzahl , 1963 .

[4]  P. Os,et al.  Problems and Results in Combinatorial Analysis , 1978 .

[5]  Ervin Györi,et al.  3-uniform hypergraphs avoiding a given odd cycle , 2012, Comb..

[6]  Claude Berge,et al.  Hypergraphs - combinatorics of finite sets , 1989, North-Holland mathematical library.

[7]  Moshe Morgenstern,et al.  Existence and Explicit Constructions of q + 1 Regular Ramanujan Graphs for Every Prime Power q , 1994, J. Comb. Theory, Ser. B.

[8]  Shlomo Hoory,et al.  The Size of Bipartite Graphs with a Given Girth , 2002, J. Comb. Theory, Ser. B.

[9]  Nathan Linial,et al.  Lifts, Discrepancy and Nearly Optimal Spectral Gap* , 2006, Comb..

[10]  Felix Lazebnik,et al.  New upper bounds on the order of cages , 1996, Electron. J. Comb..

[11]  Alan M. Frieze,et al.  Perfect Matchings in Random r-regular, s-uniform Hypergraphs , 1996, Combinatorics, Probability and Computing.

[12]  Roy Meshulam,et al.  A Moore bound for simplicial complexes , 2007 .

[13]  Robert A. Beezer The girth of a design , 2002 .

[14]  D. Spielman,et al.  Interlacing Families II: Mixed Characteristic Polynomials and the Kadison-Singer Problem , 2013, 1306.3969.

[15]  F. Lazebnik,et al.  A new series of dense graphs of high girth , 1995, math/9501231.

[16]  Nikhil Srivastava,et al.  Interlacing Families I: Bipartite Ramanujan Graphs of All Degrees , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.

[17]  P. Erdos Problems and Results in Combinatorial Analysis , 2022 .

[18]  Norman Biggs,et al.  Graphs with even girth and small excess , 1980, Mathematical Proceedings of the Cambridge Philosophical Society.

[19]  Mehrdad Shahshahani,et al.  On the girth of random Cayley graphs , 2009 .

[20]  Tatsuro Ito,et al.  Regular graphs with excess one , 1981, Discret. Math..

[21]  Béla Bollobás,et al.  Pentagons vs. triangles , 2008, Discret. Math..

[22]  Michael Goff,et al.  Higher Dimensional Moore Bounds , 2009, Graphs Comb..

[23]  Felix Lazebnik,et al.  On Hypergraphs of Girth Five , 2003, Electron. J. Comb..

[24]  Herbert Fleischner,et al.  Selected Topics in Graph Theory 2 , 1983 .

[25]  Peter Kovács The non-existence of certain regular graphs of girth 5 , 1981, J. Comb. Theory, Ser. B.