On Regular Hypergraphs of High Girth
暂无分享,去创建一个
[1] Richard A. Duke. Types of Cycles in Hypergraphs , 1985 .
[2] M. Murty. Ramanujan Graphs , 1965 .
[3] H. Sachs,et al. Regukre Graphen gegebener Taillenweite mit minimaler Knotenzahl , 1963 .
[4] P. Os,et al. Problems and Results in Combinatorial Analysis , 1978 .
[5] Ervin Györi,et al. 3-uniform hypergraphs avoiding a given odd cycle , 2012, Comb..
[6] Claude Berge,et al. Hypergraphs - combinatorics of finite sets , 1989, North-Holland mathematical library.
[7] Moshe Morgenstern,et al. Existence and Explicit Constructions of q + 1 Regular Ramanujan Graphs for Every Prime Power q , 1994, J. Comb. Theory, Ser. B.
[8] Shlomo Hoory,et al. The Size of Bipartite Graphs with a Given Girth , 2002, J. Comb. Theory, Ser. B.
[9] Nathan Linial,et al. Lifts, Discrepancy and Nearly Optimal Spectral Gap* , 2006, Comb..
[10] Felix Lazebnik,et al. New upper bounds on the order of cages , 1996, Electron. J. Comb..
[11] Alan M. Frieze,et al. Perfect Matchings in Random r-regular, s-uniform Hypergraphs , 1996, Combinatorics, Probability and Computing.
[12] Roy Meshulam,et al. A Moore bound for simplicial complexes , 2007 .
[13] Robert A. Beezer. The girth of a design , 2002 .
[14] D. Spielman,et al. Interlacing Families II: Mixed Characteristic Polynomials and the Kadison-Singer Problem , 2013, 1306.3969.
[15] F. Lazebnik,et al. A new series of dense graphs of high girth , 1995, math/9501231.
[16] Nikhil Srivastava,et al. Interlacing Families I: Bipartite Ramanujan Graphs of All Degrees , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.
[17] P. Erdos. Problems and Results in Combinatorial Analysis , 2022 .
[18] Norman Biggs,et al. Graphs with even girth and small excess , 1980, Mathematical Proceedings of the Cambridge Philosophical Society.
[19] Mehrdad Shahshahani,et al. On the girth of random Cayley graphs , 2009 .
[20] Tatsuro Ito,et al. Regular graphs with excess one , 1981, Discret. Math..
[21] Béla Bollobás,et al. Pentagons vs. triangles , 2008, Discret. Math..
[22] Michael Goff,et al. Higher Dimensional Moore Bounds , 2009, Graphs Comb..
[23] Felix Lazebnik,et al. On Hypergraphs of Girth Five , 2003, Electron. J. Comb..
[24] Herbert Fleischner,et al. Selected Topics in Graph Theory 2 , 1983 .
[25] Peter Kovács. The non-existence of certain regular graphs of girth 5 , 1981, J. Comb. Theory, Ser. B.