Surfactant-assisted chemical vapour deposition of high-performance small-diameter GaSb nanowires

Although various device structures based on GaSb nanowires have been realized, further performance enhancement suffers from uncontrolled radial growth during the nanowire synthesis, resulting in non-uniform and tapered nanowires with diameters larger than few tens of nanometres. Here we report the use of sulfur surfactant in chemical vapour deposition to achieve very thin and uniform GaSb nanowires with diameters down to 20 nm. In contrast to surfactant effects typically employed in the liquid phase and thin-film technologies, the sulfur atoms contribute to form stable S-Sb bonds on the as-grown nanowire surface, effectively stabilizing sidewalls and minimizing unintentional radial nanowire growth. When configured into transistors, these devices exhibit impressive electrical properties with the peak hole mobility of ~200 cm(2 )V(-1 )s(-1), better than any mobility value reported for a GaSb nanowire device to date. These factors indicate the effectiveness of this surfactant-assisted growth for high-performance small-diameter GaSb nanowires.

[1]  J. Wallentin,et al.  Au-Seeded Growth of Vertical and in-Plane III–V Nanowires on Graphite Substrates , 2014, Nano letters.

[2]  L. Wernersson,et al.  Characterization of GaSb nanowires grown by MOVPE , 2008 .

[3]  Ning Han,et al.  Crystalline GaSb nanowires synthesized on amorphous substrates: from the formation mechanism to p-channel transistor applications. , 2013, ACS applied materials & interfaces.

[4]  Zhiyong Fan,et al.  Diameter-dependent electron mobility of InAs nanowires. , 2009, Nano letters.

[5]  Shadi A Dayeh,et al.  III-V nanowire growth mechanism: V/III ratio and temperature effects. , 2007, Nano letters.

[6]  W. Jaegermann,et al.  Sulfur Passivation of GaSb(100) Surfaces: Comparison of Aqueous and Alcoholic Sulfide Solutions Using Synchrotron Radiation Photoemission Spectroscopy , 2013 .

[7]  L. Samuelson,et al.  Structural properties of 〈111〉B -oriented III–V nanowires , 2006, Nature materials.

[8]  Lars-Erik Wernersson,et al.  Synthesis and properties of antimonide nanowires , 2013, Nanotechnology.

[9]  Jared J. Hou,et al.  Manipulated Growth of GaAs Nanowires: Controllable Crystal Quality and Growth Orientations via a Supersaturation-Controlled Engineering Process , 2012 .

[10]  Guangyin Fan,et al.  Solution-based synthesis of III–V quantum dots and their applications in gas sensing and bio-imaging , 2014 .

[11]  Paolo Lugli,et al.  Conductance enhancement of InAs/InP heterostructure nanowires by surface functionalization with oligo(phenylene vinylene)s. , 2013, ACS nano.

[12]  Jared J. Hou,et al.  GaAs nanowires: from manipulation of defect formation to controllable electronic transport properties. , 2013, ACS nano.

[13]  Guang-Yao Huang,et al.  Anomalous zero-bias conductance peak in a Nb-InSb nanowire-Nb hybrid device. , 2012, Nano letters.

[14]  Mats-Erik Pistol,et al.  InAs/GaSb heterostructure nanowires for tunnel field-effect transistors. , 2010, Nano letters.

[15]  C. Ning,et al.  Removal of surface states and recovery of band-edge emission in InAs nanowires through surface passivation. , 2012, Nano letters.

[16]  J. Rogers,et al.  Monolithic III‐V Nanowire Solar Cells on Graphene via Direct van der Waals Epitaxy , 2014, Advanced materials.

[17]  S. von Molnár,et al.  Controlled synthesis of phase-pure InAs nanowires on Si(111) by diminishing the diameter to 10 nm. , 2014, Nano letters.

[18]  Joshua E-Y Lee,et al.  Diameter dependence of electron mobility in InGaAs nanowires , 2013 .

[19]  G. Schmid,et al.  Quantum-size effects in the thermodynamic properties of metallic nanoparticles , 1996, Nature.

[20]  J. D. Wiley Chapter 2 Mobility of Holes in III-V Compounds , 1975 .

[21]  E. Bakkers,et al.  Signatures of Majorana Fermions in Hybrid Superconductor-Semiconductor Nanowire Devices , 2012, Science.

[22]  W. Buhro,et al.  Solution–Liquid–Solid Growth of Soluble GaAs Nanowires , 2003 .

[23]  Lars-Erik Wernersson,et al.  Single InAs/GaSb nanowire low-power CMOS inverter. , 2012, Nano letters.

[24]  Lin-Wang Wang,et al.  Two- versus three-dimensional quantum confinement in indium phosphide wires and dots , 2003, Nature materials.

[25]  Jared J. Hou,et al.  Controllable p-n switching behaviors of GaAs nanowires via an interface effect. , 2012, ACS nano.

[26]  Jared J. Hou,et al.  Tunable Electronic Transport Properties of Metal‐Cluster‐Decorated III–V Nanowire Transistors , 2013, Advanced materials.

[27]  L. Wernersson,et al.  GaSb nanowire single-hole transistor , 2011 .

[28]  Lei Jin,et al.  ZnO with Different Morphologies Synthesized by Solvothermal Methods for Enhanced Photocatalytic Activity , 2009 .

[29]  Peide D. Ye,et al.  Effects of (NH4)2S passivation on the off-state performance of 3-dimensional InGaAs metal-oxide-semiconductor field-effect transistors , 2011 .

[30]  M. D. Vargas,et al.  Study of magnetism in osmium cluster compounds as molecular models for small metallic particles , 1985 .

[31]  Magnus T. Borgstroem InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit. , 2013 .

[32]  A Kis,et al.  Reply to 'Measurement of mobility in dual-gated MoS₂ transistors'. , 2013, Nature nanotechnology.

[33]  Yu Huang,et al.  Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices , 2001, Nature.

[34]  J. Ho,et al.  Carbon doping of InSb nanowires for high-performance p-channel field-effect-transistors. , 2013, Nanoscale.

[35]  G. U. Kulkarni,et al.  Size-dependent chemistry: properties of nanocrystals. , 2002, Chemistry.

[36]  James Hone,et al.  Measurement of mobility in dual-gated MoS₂ transistors. , 2013, Nature nanotechnology.

[37]  B. Borg,et al.  Diameter limitation in growth of III-Sb-containing nanowire heterostructures. , 2013, ACS nano.

[38]  Suman Datta,et al.  Electron transport in multigate In x Ga 1-x as nanowire FETs: from diffusive to ballistic regimes at room temperature. , 2014, Nano letters.

[39]  Sylvie Grugeon,et al.  Nano‐Sized Transition‐Metal Oxides as Negative‐Electrode Materials for Lithium‐Ion Batteries. , 2001 .

[40]  X. Wallart,et al.  Gold-Free Ternary III–V Antimonide Nanowire Arrays on Silicon: Twin-Free down to the First Bilayer , 2013, Nano letters.

[41]  T. Fukui,et al.  A III–V nanowire channel on silicon for high-performance vertical transistors , 2012, Nature.

[42]  S. M. Durbin,et al.  Growth and Characterization of Unintentionally Doped GaSb Nanowires , 2010 .

[43]  K. Dick,et al.  A New Understanding of Au‐Assisted Growth of III–V Semiconductor Nanowires , 2005 .

[44]  Zhiyong Fan,et al.  Synthesis, contact printing, and device characterization of Ni-catalyzed, crystalline InAs nanowires , 2008, 0807.0946.

[45]  J. Appenzeller,et al.  Synthesis of antimony-based nanowires using the simple vapor deposition method. , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.

[46]  Shaoyun Huang,et al.  Synthesis, properties, and top-gated metal–oxide–semiconductor field-effect transistors of p-type GaSb nanowires , 2013 .

[47]  J. Alamo Nanometre-scale electronics with III–V compound semiconductors , 2011, Nature.

[48]  C. L. Yu,et al.  Observation of Majorana Fermions in a Nb-InSb Nanowire-Nb Hybrid Quantum Device , 2012, 1204.4130.

[49]  Peidong Yang,et al.  Nanowire dye-sensitized solar cells , 2005, Nature materials.

[50]  Jacek K. Furdyna,et al.  The fractional a.c. Josephson effect in a semiconductor–superconductor nanowire as a signature of Majorana particles , 2012, Nature Physics.

[51]  Ning Han,et al.  Synthesis and characterizations of ternary InGaAs nanowires by a two-step growth method for high-performance electronic devices. , 2012, ACS nano.

[52]  Peter W Voorhees,et al.  Direct measurement of dopant distribution in an individual vapour-liquid-solid nanowire. , 2009, Nature nanotechnology.

[53]  Y. Qian Solvothermal Synthesis of Nanocrystalline III–V Semiconductors , 1999 .

[54]  Xinjian Feng,et al.  Oriented assembled TiO2 hierarchical nanowire arrays with fast electron transport properties. , 2014, Nano letters.