Comparative Study of Curvature Sensing Mediated by F-BAR and an Intrinsically Disordered Region of FBP17

[1]  Oleksii S. Rukhlenko,et al.  Periodic propagating waves coordinate RhoGTPase network dynamics at the leading and trailing edges during cell migration , 2020, bioRxiv.

[2]  B. Cui,et al.  Light-inducible generation of membrane curvature in live cells with engineered BAR domain proteins , 2020, bioRxiv.

[3]  J. Stachowiak,et al.  Structured and intrinsically disordered domains within Amphiphysin1 work together to sense and drive membrane curvature. , 2019, Soft matter.

[4]  K. Gould,et al.  The intrinsically disordered region of the cytokinetic F-BAR protein Cdc15 performs a unique essential function in maintenance of cytokinetic ring integrity , 2019, Molecular biology of the cell.

[5]  E. Dent,et al.  Opposing functions of F-BAR proteins in neuronal membrane protrusion, tubule formation, and neurite outgrowth , 2019, Life Science Alliance.

[6]  Allister F. McGuire,et al.  A nanostructure platform for live-cell manipulation of membrane curvature , 2019, Nature Protocols.

[7]  H. Noguchi Shape transition from elliptical to cylindrical membrane tubes induced by chiral crescent-shaped protein rods , 2018, Scientific Reports.

[8]  D. Thirumalai,et al.  Synergy between intrinsically disordered domains and structured proteins amplifies membrane curvature sensing , 2018, Nature Communications.

[9]  G. Voth,et al.  Organizing membrane-curving proteins: the emerging dynamical picture. , 2018, Current opinion in structural biology.

[10]  Zsuzsanna Dosztányi,et al.  IUPred2A: context-dependent prediction of protein disorder as a function of redox state and protein binding , 2018, Nucleic Acids Res..

[11]  N. Budisa,et al.  Transmembrane Polyproline Helix. , 2018, The journal of physical chemistry letters.

[12]  A. Kondo,et al.  A curvature-dependent membrane binding by tyrosine kinase Fer involves an intrinsically disordered region. , 2018, Biochemical and biophysical research communications.

[13]  Zhanghan Wu,et al.  Membrane shape-mediated wave propagation of cortical protein dynamics , 2018, Nature Communications.

[14]  O. Weiner,et al.  Clathrin Assembly Defines the Onset and Geometry of Cortical Patterning. , 2017, Developmental cell.

[15]  Cheesan Tong,et al.  Mitotic Cortical Waves Predict Future Division Sites by Encoding Positional and Size Information. , 2017, Developmental cell.

[16]  Francesca Santoro,et al.  Nanoscale manipulation of membrane curvature for probing endocytosis in live cells. , 2017, Nature nanotechnology.

[17]  Sayak Bhattacharya,et al.  Altering the threshold of an excitable signal transduction network changes cell migratory modes , 2017, Nature Cell Biology.

[18]  G. Voth,et al.  How curvature-generating proteins build scaffolds on membrane nanotubes , 2016, Proceedings of the National Academy of Sciences.

[19]  M. Bonn,et al.  SAP(E) - A cell-penetrating polyproline helix at lipid interfaces. , 2016, Biochimica et biophysica acta.

[20]  Min Wu,et al.  Frequency and amplitude control of cortical oscillations by phosphoinositide waves. , 2016, Nature chemical biology.

[21]  K. Gould,et al.  The Tubulation Activity of a Fission Yeast F-BAR Protein Is Dispensable for Its Function in Cytokinesis Graphical Abstract Highlights , 2018 .

[22]  H. Noguchi Membrane tubule formation by banana-shaped proteins with or without transient network structure , 2015, Scientific Reports.

[23]  G. Voth,et al.  When Physics Takes Over: BAR Proteins and Membrane Curvature. , 2015, Trends in cell biology.

[24]  G. von Dassow,et al.  Activator-inhibitor coupling between Rho signaling and actin assembly make the cell cortex an excitable medium , 2015, Nature Cell Biology.

[25]  Y. Sakumura,et al.  Actin Migration Driven by Directional Assembly and Disassembly of Membrane-Anchored Actin Filaments. , 2015, Cell reports.

[26]  S. Kurisu,et al.  Dynamic shaping of cellular membranes by phospholipids and membrane-deforming proteins. , 2014, Physiological reviews.

[27]  Christopher J. Oldfield,et al.  Classification of Intrinsically Disordered Regions and Proteins , 2014, Chemical reviews.

[28]  Siewert J Marrink,et al.  Mechanisms shaping cell membranes. , 2014, Current opinion in cell biology.

[29]  Essi V. Koskela,et al.  Membrane-Sculpting BAR Domains Generate Stable Lipid Microdomains , 2013, Cell reports.

[30]  S. Kurisu,et al.  Antagonistic regulation of F-BAR protein assemblies controls actin polymerization during podosome formation , 2013, Journal of Cell Science.

[31]  L. Oddershede,et al.  FBAR Syndapin 1 recognizes and stabilizes highly curved tubular membranes in a concentration dependent manner , 2013, Scientific Reports.

[32]  M. Fleshner,et al.  MARCKS-ED peptide as a curvature and lipid sensor. , 2013, ACS chemical biology.

[33]  P. De Camilli,et al.  Calcium oscillations-coupled conversion of actin travelling waves to standing oscillations , 2013, Proceedings of the National Academy of Sciences.

[34]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[35]  Adam Frost,et al.  Structural Basis of Membrane Bending by the N-BAR Protein Endophilin , 2012, Cell.

[36]  A. Gautreau,et al.  Synergistic BAR-NPF interactions in actin-driven membrane remodeling. , 2012, Trends in cell biology.

[37]  M. Kessels,et al.  Let's go bananas: revisiting the endocytic BAR code , 2011, The EMBO journal.

[38]  B. Antonny,et al.  α-Synuclein and ALPS motifs are membrane curvature sensors whose contrasting chemistry mediates selective vesicle binding , 2011, The Journal of cell biology.

[39]  Bruno Antonny,et al.  Mechanisms of membrane curvature sensing. , 2011, Annual review of biochemistry.

[40]  T. Baumgart,et al.  Thermodynamics and mechanics of membrane curvature generation and sensing by proteins and lipids. , 2011, Annual review of physical chemistry.

[41]  D. Perrais,et al.  A High Precision Survey of the Molecular Dynamics of Mammalian Clathrin-Mediated Endocytosis , 2011, Microscopy and Microanalysis.

[42]  Xiaowei Zhuang,et al.  Coupling between clathrin-dependent endocytic budding and F-BAR-dependent tubulation in a cell-free system , 2010, Nature Cell Biology.

[43]  N. Hatzakis,et al.  A unifying mechanism accounts for sensing of membrane curvature by BAR domains, amphipathic helices and membrane-anchored proteins. , 2010, Seminars in cell & developmental biology.

[44]  U. Gether,et al.  BAR domains, amphipathic helices and membrane‐anchored proteins use the same mechanism to sense membrane curvature , 2010, FEBS letters.

[45]  U. Gether,et al.  Amphipathic motifs in BAR domains are essential for membrane curvature sensing , 2009, The EMBO journal.

[46]  P. Camilli,et al.  The BAR Domain Superfamily: Membrane-Molding Macromolecules , 2009, Cell.

[47]  Howard A. Stone,et al.  Geometric Cue for Protein Localization in a Bacterium , 2009, Science.

[48]  Shiro Suetsugu,et al.  EFC/F‐BAR proteins and the N‐WASP–WIP complex induce membrane curvature‐dependent actin polymerization , 2008, The EMBO journal.

[49]  Adam Frost,et al.  Structural Basis of Membrane Invagination by F-BAR Domains , 2008, Cell.

[50]  L. Hinrichsen,et al.  Endocytosis: clathrin-mediated membrane budding. , 2007, Current opinion in cell biology.

[51]  Rohit Mittal,et al.  Structure and analysis of FCHo2 F-BAR domain: a dimerizing and membrane recruitment module that effects membrane curvature. , 2007, Structure.

[52]  Sumio Sugano,et al.  Curved EFC/F-BAR-Domain Dimers Are Joined End to End into a Filament for Membrane Invagination in Endocytosis , 2007, Cell.

[53]  G. Drin,et al.  A general amphipathic α-helical motif for sensing membrane curvature , 2007, Nature Structural &Molecular Biology.

[54]  B. Antonny Membrane deformation by protein coats. , 2006, Current opinion in cell biology.

[55]  Shiro Suetsugu,et al.  Coordination between the actin cytoskeleton and membrane deformation by a novel membrane tubulation domain of PCH proteins is involved in endocytosis , 2006, The Journal of cell biology.

[56]  Michael M. Kozlov,et al.  How proteins produce cellular membrane curvature , 2006, Nature Reviews Molecular Cell Biology.

[57]  Bianca Habermann,et al.  Dynamin and the actin cytoskeleton cooperatively regulate plasma membrane invagination by BAR and F-BAR proteins. , 2005, Developmental cell.

[58]  Harvey T. McMahon,et al.  Membrane curvature and mechanisms of dynamic cell membrane remodelling , 2005, Nature.

[59]  G. Drin,et al.  ArfGAP1 responds to membrane curvature through the folding of a lipid packing sensor motif , 2005, The EMBO journal.

[60]  G. Crooks,et al.  WebLogo: a sequence logo generator. , 2004, Genome research.

[61]  H. Katoh,et al.  Identification of Splicing Variants of Rapostlin, a Novel Rnd2 Effector that Interacts with Neural Wiskott-Aldrich Syndrome Protein and Induces Neurite Branching* , 2004, Journal of Biological Chemistry.

[62]  B. Peter,et al.  BAR Domains as Sensors of Membrane Curvature: The Amphiphysin BAR Structure , 2004, Science.

[63]  Watt W. Webb,et al.  Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension , 2003, Nature.

[64]  Khashayar Farsad,et al.  Mechanisms of membrane deformation. , 2003, Current opinion in cell biology.

[65]  G. Ruthel,et al.  Role of moving growth cone-like "wave" structures in the outgrowth of cultured hippocampal axons and dendrites. , 1999, Journal of neurobiology.

[66]  A. Jonas,et al.  Stabilization of α-Synuclein Secondary Structure upon Binding to Synthetic Membranes* , 1998, The Journal of Biological Chemistry.