Parameter estimation in spike and slab variational inference for blind image deconvolution

Most current state of the art blind image deconvolution methods model the underlying image (either in the image or filter space) using sparsity promoting priors and perform inference, that is, image, blur, and parameter estimation using variational approximation. In this paper we propose the use of the spike-and-slab prior model in the filter space and a variational posterior approximation more expressive than mean field. The spike-and-slab prior model, which is the "gold-standard" in sparse machine learning, has the ability to selectively shrink irrelevant variables while relevant variables are mildly regularized. This allows to discard irrelevant information while preserving important features for the estimation of the blur which results in more precise and less noisy blur kernel estimates. In this paper we present a variational inference algorithm for estimating the blur in the filter space, which is both more efficient than MCMC and more accurate than the standard mean field variational approximation. The parameters of the prior model are automatically estimated together with the blur. Once the blur is estimated, a non-blind image restoration algorithm is used to obtain the sharp image. We prove the efficacy of our method on both synthetically generated and real images.

[1]  Frédo Durand,et al.  Efficient marginal likelihood optimization in blind deconvolution , 2011, CVPR 2011.

[2]  Jean-Yves Tourneret,et al.  Sparse signal recovery using a Bernoulli generalized Gaussian prior , 2015, 2015 23rd European Signal Processing Conference (EUSIPCO).

[3]  Jean-Yves Tourneret,et al.  Sparse Bayesian regularization using Bernoulli-Laplacian priors , 2013, 21st European Signal Processing Conference (EUSIPCO 2013).

[4]  J. S. Rao,et al.  Spike and slab variable selection: Frequentist and Bayesian strategies , 2005, math/0505633.

[5]  Sylvain Paris,et al.  Handling Noise in Single Image Deblurring Using Directional Filters , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[6]  Guillermo Sapiro,et al.  Non-Parametric Bayesian Dictionary Learning for Sparse Image Representations , 2009, NIPS.

[7]  Xu Zhou,et al.  Variational Bayesian Blind Image Deconvolution: A review , 2015, Digit. Signal Process..

[8]  Xu Zhou,et al.  Variational Dirichlet Blur Kernel Estimation , 2015, IEEE Transactions on Image Processing.

[9]  Daniel Hernández-Lobato,et al.  Expectation propagation in linear regression models with spike-and-slab priors , 2015, Machine Learning.

[10]  Aggelos K. Katsaggelos,et al.  Bayesian Blind Deconvolution with General Sparse Image Priors , 2012, ECCV.

[11]  Jianhua Lu,et al.  Variational Bayesian image fusion based on combined sparse representations , 2016, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[12]  Raymond H. Chan,et al.  Parameter selection for total-variation-based image restoration using discrepancy principle , 2012, IEEE Transactions on Image Processing.

[13]  Xu Zhou,et al.  Fast iteratively reweighted least squares for lp regularized image deconvolution and reconstruction , 2014, 2014 IEEE International Conference on Image Processing (ICIP).

[14]  Sundaresh Ram,et al.  Removing Camera Shake from a Single Photograph , 2009 .

[15]  G. Malsiner‐Walli,et al.  Comparing Spike and Slab Priors for Bayesian Variable Selection , 2016, 1812.07259.

[16]  Syed Abbas,et al.  Efficient sparse Bayesian learning using spike-and-slab priors , 2016 .

[17]  Katherine A. Heller,et al.  Bayesian and L1 Approaches to Sparse Unsupervised Learning , 2011, ICML 2012.

[18]  Miguel Lázaro-Gredilla,et al.  Spike and Slab Variational Inference for Multi-Task and Multiple Kernel Learning , 2011, NIPS.

[19]  Li Xu,et al.  Unnatural L0 Sparse Representation for Natural Image Deblurring , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[20]  E. George,et al.  Negotiating multicollinearity with spike-and-slab priors , 2014, Metron.

[21]  A. Mohammad-Djafari,et al.  BAYESIAN BLIND DECONVOLUTION OF IMAGES COMPARING JMAP , EM AND BVA WITH A STUDENT-T A PRIORI MODEL , 2014 .

[22]  Michael K. Ng,et al.  Blind Deconvolution Using Generalized Cross-Validation Approach to Regularization Parameter Estimation , 2011, IEEE Transactions on Image Processing.

[23]  Xu Zhou,et al.  Fast Bayesian blind deconvolution with Huber Super Gaussian priors , 2017, Digit. Signal Process..

[24]  Rafael Molina,et al.  Blind Image Deconvolution: Problem formulation and existing approaches , 2007 .

[25]  Mário A. T. Figueiredo,et al.  Parameter Estimation for Blind and Non-Blind Deblurring Using Residual Whiteness Measures , 2013, IEEE Transactions on Image Processing.

[26]  Pingkun Yan,et al.  Sparse coding for image denoising using spike and slab prior , 2013, Neurocomputing.

[27]  Aggelos K. Katsaggelos,et al.  Blind Deconvolution Using a Variational Approach to Parameter, Image, and Blur Estimation , 2006, IEEE Transactions on Image Processing.