Partial Benders Decomposition Strategies for Two-Stage Stochastic Integer Programs

Benders decomposition is a broadly used used exact solution method for stochastic programming, enabling such programs to be decomposed according to the realizations of the random events that set the values of their stochastic parameters. This strategy also comes with important drawbacks, however, such as a weak master problem following the relaxation step that confines the dual cuts to the scenario sub-problems. We propose the first comprehensive Partial Benders Decomposition methodology for twostage integer stochastic program, based on the idea of including explicit information from the scenario sub-problems in the master. We propose two scenario-retention strategies that include a subset of the second stage scenario variables in the master, aiming to significantly reduce the number of feasibility cuts generated. We also propose a scenariocreation strategy to improve the lower-bound provided by the master problem, as well as three hybrids obtained by combining these pure strategies. We report the results of an extensive experimental campaign on two-stage stochastic multicommodity network design problems. The analysis clearly shows the proposed methodology yields significant benefits in computation efficiency, solution quality, and stability of the solution process.

[1]  R. Wets,et al.  L-SHAPED LINEAR PROGRAMS WITH APPLICATIONS TO OPTIMAL CONTROL AND STOCHASTIC PROGRAMMING. , 1969 .

[2]  Matteo Fischetti,et al.  Redesigning Benders Decomposition for Large-Scale Facility Location , 2017, Manag. Sci..

[3]  Gilbert Laporte,et al.  Benders Decomposition for Large-Scale Uncapacitated Hub Location , 2011, Oper. Res..

[4]  A. M. Geoffrion Generalized Benders decomposition , 1972 .

[5]  M. Laughton,et al.  Large-scale mixed integer programming: Benders-type heuristics , 1984 .

[6]  Tony J. Van Roy,et al.  Cross decomposition for mixed integer programming , 1983, Math. Program..

[7]  Brian T. Denton,et al.  Operating Room Pooling and Parallel Surgery Processing Under Uncertainty , 2011, INFORMS J. Comput..

[8]  Arthur M. Geoffrion,et al.  Elements of large-scale mathematical programming , 1969 .

[9]  Michel Gendreau,et al.  The Benders decomposition algorithm: A literature review , 2017, Eur. J. Oper. Res..

[10]  J. Hooker,et al.  Logic-based Benders decomposition , 2003 .

[11]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988 .

[12]  Michael C. Ferris,et al.  Computational Study of Security Constrained Economic Dispatch With Multi-Stage Rescheduling , 2015, IEEE Transactions on Power Systems.

[13]  Alysson M. Costa A survey on benders decomposition applied to fixed-charge network design problems , 2005, Comput. Oper. Res..

[14]  Michel Gendreau,et al.  Accelerating Benders Decomposition by Local Branching , 2009, INFORMS J. Comput..

[15]  Gautam Mitra,et al.  Computational solution of capacity planning models under uncertainty , 2000, Parallel Comput..

[16]  Alain Martel,et al.  The design of robust value-creating supply chain networks , 2010, Eur. J. Oper. Res..

[17]  John M. Wilson,et al.  Introduction to Stochastic Programming , 1998, J. Oper. Res. Soc..

[18]  Teodor Gabriel Crainic,et al.  Bundle-based relaxation methods for multicommodity capacitated fixed charge network design , 2001, Discret. Appl. Math..

[19]  Achim Koberstein,et al.  Modeling and optimizing of strategic and tactical production planning in the automotive industry under uncertainty , 2009, OR Spectr..

[20]  Michel Gendreau,et al.  Progressive hedging‐based metaheuristics for stochastic network design , 2011, Networks.

[21]  Jacques F. Benders,et al.  Partitioning procedures for solving mixed-variables programming problems , 2005, Comput. Manag. Sci..

[22]  Hanif D. Sherali,et al.  On generating maximal nondominated Benders cuts , 2013, Ann. Oper. Res..

[23]  John E. Beasley,et al.  Improving benders decomposition using a genetic algorithm , 2009, Eur. J. Oper. Res..

[24]  J. Birge,et al.  A multicut algorithm for two-stage stochastic linear programs , 1988 .

[25]  Matteo Fischetti,et al.  A note on the selection of Benders’ cuts , 2010, Math. Program..

[26]  Mir Saman Pishvaee,et al.  An accelerated Benders decomposition algorithm for sustainable supply chain network design under uncertainty: A case study of medical needle and syringe supply chain , 2014 .

[27]  Michal Kaut,et al.  A Heuristic for Moment-Matching Scenario Generation , 2003, Comput. Optim. Appl..

[28]  Arthur M. Geoffrion,et al.  Elements of Large-Scale Mathematical Programming Part I: Concepts , 1970 .

[29]  Ricardo Saraiva de Camargo,et al.  Benders Decomposition for Hub Location Problems with Economies of Scale , 2009, Transp. Sci..

[30]  Thomas L. Magnanti,et al.  Accelerating Benders Decomposition: Algorithmic Enhancement and Model Selection Criteria , 1981, Oper. Res..

[31]  Kaj Holmberg,et al.  On using approximations of the Benders master problem , 1994 .

[32]  Jean-François Cordeau,et al.  Benders Decomposition for Production Routing Under Demand Uncertainty , 2012, Oper. Res..

[33]  Nikolaos Papadakos,et al.  Practical enhancements to the Magnanti-Wong method , 2008, Oper. Res. Lett..

[34]  Alain Martel,et al.  Scenario-based Supply Chain Network risk modeling , 2012, Eur. J. Oper. Res..

[35]  R. Rockafellar,et al.  The fundamental risk quadrangle in risk management, optimization and statistical estimation , 2013 .

[36]  M. D. Devine,et al.  A Modified Benders' Partitioning Algorithm for Mixed Integer Programming , 1977 .

[37]  A. M. Geoffrion,et al.  Multicommodity Distribution System Design by Benders Decomposition , 1974 .