Low-noise 1.5 THz waveguide-type hot-electron bolometer mixers using relatively thick NbTiN superconducting film

We have developed waveguide-type low-noise superconducting hot-electron bolometer (HEB) mixers for astronomical observations in the 1.3–1.5 THz region by using a relatively thick NbTiN superconducting film (10.8 nm). We have achieved a receiver noise temperature of 490 K (DSB: double side band) at 1.475 THz. This noise temperature corresponds to seven times the quantum noise. According to gain bandwidth measurements, the contribution of diffusion cooling is found to be responsible for such a good noise performance.

[1]  B. Voronov,et al.  Low noise and wide bandwidth of NbN hot-electron bolometer mixers , 2011 .

[2]  M. Siegel,et al.  Optical and transport properties of ultrathin NbN films and nanostructures , 2009 .

[3]  H. Maezawa,et al.  Development of THz Waveguide NbTiN HEB Mixers , 2009, IEEE Transactions on Applied Superconductivity.

[4]  Wenlei Shan,et al.  A Submillimeter Cartridge-Type Receiver: ALMA Band 8 (385-500 GHz) Qualification Model , 2008 .

[5]  Sergey Cherednichenko,et al.  Hot-electron bolometer terahertz mixers for the Herschel Space Observatory. , 2008, The Review of scientific instruments.

[6]  K. Menten,et al.  First observations with CONDOR, a 1.5 THz heterodyne receiver , 2006, astro-ph/0606560.

[7]  C. Kramer,et al.  The Herschel-Heterodyne Instrument for the Far-Infrared (HIFI) , 2005, Infrared and Millimeter Waves, Conference Digest of the 2004 Joint 29th International Conference on 2004 and 12th International Conference on Terahertz Electronics, 2004..

[8]  R. Blundell,et al.  Performance of the NbTiN hot electron bolometer mixer with AlN buffer layer at terahertz frequency range , 2005, IEEE Transactions on Applied Superconductivity.

[9]  T. M. Klapwijk,et al.  Low noise NbN superconducting hot electron bolometer mixers at 1.9 and 2.5 THz , 2004 .

[10]  I. Mehdi,et al.  A 1.5 THz Hot-Electron Bolometer mixer operated by a planar diode based local oscillator , 2003, IEEE MTT-S International Microwave Symposium Digest, 2003.

[11]  Pourya Khosropanah,et al.  1.6 THz heterodyne receiver for the far infrared space telescope , 2002 .

[12]  Alexander Korneev,et al.  Quantum detection by current carrying superconducting film , 2001 .

[13]  Shigehito Miki,et al.  IF bandwidth and noise temperature measurements of NbN HEB mixers on MgO substrates , 2001 .

[14]  M. Schicke,et al.  SIS and bolometer mixers for terahertz frequencies , 2000 .

[15]  Gregory N. Goltsman,et al.  Design and performance of the lattice-cooled hot-electron terahertz mixer , 2000 .

[16]  R. Schoelkopf,et al.  Noise bandwidth of diffusion-cooled hot-electron bolometers , 1997, IEEE Transactions on Applied Superconductivity.

[17]  K. Jacobs,et al.  Diffusion-cooled superconducting hot electron bolometer heterodyne mixer between 630 and 820 GHz , 1997, IEEE Transactions on Applied Superconductivity.

[18]  Sigfrid Yngvesson,et al.  Gain and noise bandwidth of NbN hot-electron bolometric mixers , 1997 .

[19]  Boris S. Karasik,et al.  Noise temperature limit of a superconducting hot‐electron bolometer mixer , 1996 .

[20]  Daniel E. Prober,et al.  Superconducting terahertz mixer using a transition-edge microbolometer , 1993 .

[21]  M. Pantaleev,et al.  A 1.3-THz Balanced Waveguide HEB Mixer for the APEX Telescope , 2009, IEEE Transactions on Microwave Theory and Techniques.