An Accelerated Splitting-up Method for Parabolic Equations

We approximate the solution u of the Cauchy problem \begin{gather*} \frac{\partial}{\partial t} u(t,x)=Lu(t,x)+f(t,x), \quad (t,x)\in(0,T]\times\bR^d,\\ u(0,x)=u_0(x),\quad x\in\bR^d, \end{gather*} by splitting the equation into the system $$ \frac{\partial}{\partial t} v_r(t,x)=L_rv_r(t,x)+f_r(t,x), \qquad r=1,2,\ldots,d_1, $$ where $L,L_r$ are second order differential operators; f, $f_r$ are functions of $t,x$ such that $L=\sum_r L_r$, $f=\sum_r f_r$. Under natural conditions on solvability in the Sobolev spaces $W^m_p$, we show that for any $k>1$ one can approximate the solution u with an error of order $\delta^k$, by an appropriate combination of the solutions $v_r$ along a sequence of time discretization, where $\delta$ is proportional to the step size of the grid. This result is obtained by using the time change introduced in [I. Gyongy and N. Krylov, Ann. Probab., 31 (2003), pp. 564-591], together with Richardson's method and a power series expansion of the error of splitting-up approximations in ...

[1]  DETERMINING EQUATIONS FOR HIGHER-ORDER DECOMPOSITIONS OF EXPONENTIAL OPERATORS , 1995, 0912.0066.

[2]  Gilbert Strang,et al.  Accurate partial difference methods , 1964 .

[3]  N. N. Yanenko,et al.  The Method of Fractional Steps , 1971 .

[4]  G. Strang On the Construction and Comparison of Difference Schemes , 1968 .

[5]  H. H. Rachford,et al.  The Numerical Solution of Parabolic and Elliptic Differential Equations , 1955 .

[6]  David Gottlieb,et al.  Strang-Type Difference Schemes for Multidimensional Problems , 1972 .

[7]  G. Quispel,et al.  Acta Numerica 2002: Splitting methods , 2002 .

[8]  J. M. Sanz-Serna,et al.  Order conditions for numerical integrators obtained by composing simpler integrators , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[9]  A. Majda,et al.  Rates of convergence for viscous splitting of the Navier-Stokes equations , 1981 .

[10]  K. Karlsen,et al.  Numerical solution of reservoir flow models based on large time step operator splitting algorithms , 2000 .

[11]  N. Krylov,et al.  On the Rate of Convergence of Splitting-up Approximations for SPDEs , 2003 .

[12]  H. Yoshida Construction of higher order symplectic integrators , 1990 .

[13]  R. Temam Sur la stabilité et la convergence de la méthode des pas fractionnaires , 1968 .

[14]  A. Chorin Numerical Solution of the Navier-Stokes Equations* , 1989 .

[15]  G. Marchuk Methods of Numerical Mathematics , 1982 .

[16]  I. Gyöngy,et al.  On the splitting-up method and stochastic partial differential equations , 2003 .

[17]  R. H. Hardin Application of the split-step Fourier method to the numerical solution of nonlinear and variable coefficient wave equations , 1973 .

[18]  G. Strang Accurate partial difference methods I: Linear cauchy problems , 1963 .

[19]  Q. Sheng Solving Linear Partial Differential Equations by Exponential Splitting , 1989 .

[20]  G. Marchuk Splitting and alternating direction methods , 1990 .

[21]  H. H. Rachford,et al.  On the numerical solution of heat conduction problems in two and three space variables , 1956 .

[22]  M. Suzuki,et al.  General theory of higher-order decomposition of exponential operators and symplectic integrators , 1992 .