Observability of linear discrete-time systems of algebraic and difference equations

ABSTRACT The notion of observability for higher order discrete-time systems of algebraic and difference equations is studied. Such systems are also known as polynomial matrix descriptions . Attention is first given to a special form of descriptor systems with a state lead in the output. This system is transformed into its causal and noncausal subsystems and observability criteria are given in terms of the subsystem's matrices, and the fundamental matrix sequence of the matrix pencil (σE − A). Afterwards, the higher order system is studied. By transforming it into a first-order descriptor system of the above form, an observability criterion is provided for the higher order system in terms of the Laurent expansion at infinity of the system's polynomial matrix. In addition, observability is connected with the coprimeness of the polynomial matrices of the higher order system and the coprimeness of the matrix pencils of the descriptor system.

[1]  Nicholas P. Karampetakis,et al.  Reachability and controllability of discrete time descriptor systems , 2012, CCCA12.

[2]  L. Dai,et al.  Singular Control Systems , 1989, Lecture Notes in Control and Information Sciences.

[3]  F. Lewis Descriptor systems: Decomposition into forward and backward subsystems , 1984 .

[4]  Basil G. Mertzios,et al.  Fundamental matrix of discrete singular systems , 1989 .

[5]  João Yoshiyuki Ishihara,et al.  Impulse controllability and observability of rectangular descriptor systems , 2001, IEEE Trans. Autom. Control..

[6]  John G. McWhirter,et al.  An Algorithm for Calculating the QR and Singular Value Decompositions of Polynomial Matrices , 2010, IEEE Transactions on Signal Processing.

[7]  N. Karampetakis On the solution space of discrete time AR-representations over a finite time horizon , 2004 .

[8]  A. Vardulakis,et al.  On the solution and impulsive behaviour of polynomial matrix descriptions of free linear multivariable systems , 1999 .

[9]  T. Berger,et al.  Observability of Linear Differential-Algebraic Systems: A Survey , 2017 .

[10]  F. Lewis Fundamental, reachability, and observability matrices for discrete descriptor systems , 1985 .

[11]  Carmen Coll,et al.  Some invariants of discrete-time descriptor systems , 2002, Appl. Math. Comput..

[12]  Nicholas P. Karampetakis,et al.  On a certain McMillan-degree condition appearing in control , 1993 .

[13]  A. Vardulakis Linear Multivariable Control: Algebraic Analysis and Synthesis Methods , 1991 .

[14]  G. Stewart,et al.  The Laurent expansion of pencils that are singular at the origin , 1991 .

[15]  D. Bender Lyapunov-like equations and reachability/observabiliy Gramians for descriptor systems , 1987 .

[16]  N. Karampetakis,et al.  On the fundamental matrix of the inverse of a polynomial matrix and applications to ARMA representations , 2009 .

[17]  Arjan van der Schaft,et al.  Surveys in Differential-Algebraic Equations I , 2013 .

[18]  E. Antoniou,et al.  Closed Form Solution for the Equations of Motion for Constrained Linear Mechanical Systems and Generalisations : An Algebraic Approach , 2016 .

[19]  Guang-Ren Duan,et al.  ESA in high‐order linear systems via output feedback , 2009 .

[20]  S. Campbell Singular Systems of Differential Equations , 1980 .

[21]  Nicholas P. Karampetakis,et al.  Solvability, reachability, controllability and observability of regular PMDs , 1998 .

[22]  Amit Bhaya,et al.  On the design of large flexible space structures(LFSS) , 1985, 1985 24th IEEE Conference on Decision and Control.

[23]  D. W. Fountain,et al.  Some generalized notions of observability , 1990, 29th IEEE Conference on Decision and Control.

[24]  Ioannis K. Dassios,et al.  On a Non-homogeneous Singular Linear Discrete Time System with a Singular Matrix Pencil , 2013, Circuits, Systems, and Signal Processing.

[25]  Alan J. Laub,et al.  Controllability and Observability Criteria for Multivariable Linear Second-Order Models , 1983, 1983 American Control Conference.

[26]  Athanasios A. Pantelous,et al.  Discretising effectively a linear singular differential system by choosing an appropriate sampling period , 2009 .

[27]  Basil G. Mertzios,et al.  Computation of the inverse of a polynomial matrix and evaluation of its Laurent expansion , 1991 .

[28]  T. Kailath,et al.  A generalized state-space for singular systems , 1981 .

[29]  Nicholas P. Karampetakis,et al.  A spectral characterization of the behavior of discrete time AR-representations over a finite time interval , 1997, 1997 European Control Conference (ECC).

[30]  Ioannis K. Dassios,et al.  On Non-homogeneous Generalized Linear Discrete Time Systems , 2012, Circuits, Systems, and Signal Processing.

[31]  F. Lewis A survey of linear singular systems , 1986 .

[32]  Nicholas P. Karampetakis,et al.  Reachability of discrete time ARMA representations , 2021, IMA J. Math. Control. Inf..

[33]  G. Duan Analysis and Design of Descriptor Linear Systems , 2010 .

[34]  W. Wolovich State-space and multivariable theory , 1972 .

[35]  Athanasios A. Pantelous,et al.  HIGHER-ORDER LINEAR MATRIX DESCRIPTOR DIFFERENTIAL EQUATIONS OF APOSTOL-KOLODNER TYPE , 2009 .

[36]  R. Kálmán On the general theory of control systems , 1959 .

[37]  Guang-Ren Duan,et al.  ESA in high-order descriptor linear systems via output feedback , 2006, 2006 Chinese Control Conference.

[38]  Volker Mehrmann,et al.  Controllability and Observability of Second Order Descriptor Systems , 2008, SIAM J. Control. Optim..

[39]  Nicholas P. Karampetakis,et al.  On the discretization of singular systems , 2004, IMA J. Math. Control. Inf..

[40]  R. F. Sincovec,et al.  Solvability, controllability, and observability of continuous descriptor systems , 1981 .

[41]  Qingling Zhang,et al.  Passivity and Optimal Control of Descriptor Biological Complex Systems , 2008, IEEE Transactions on Automatic Control.

[42]  Basil G. Mertzios,et al.  On Kalman's controllability and observability criteria for singular systems , 1999 .

[43]  Jon Rigelsford,et al.  Positive 1D and 2D Systems , 2002 .

[44]  M. Rachidi,et al.  Linear matrix differential equations of higher-order and applications , 2008 .

[45]  Xianping Liu,et al.  Output regulation for matrix second order singular systems via measurement output feedback , 2012, J. Frankl. Inst..

[46]  Nicholas P. Karampetakis,et al.  Solution of discrete ARMA-representations via MAPLE , 2003, Appl. Math. Comput..

[47]  E. Antoniou,et al.  Forward, backward, and symmetric solutions of discrete ARMA representations , 1997, 1997 European Control Conference (ECC).

[48]  Guang-Ren Duan,et al.  Observer Design in High-order Descriptor Linear Systems , 2006, 2006 SICE-ICASE International Joint Conference.

[49]  Peter C. Müller,et al.  Causal observability of descriptor systems , 1999, IEEE Trans. Autom. Control..

[50]  G. Duan,et al.  Design of PD Observers in Descriptor Linear Systems , 2007 .

[51]  Yasir Mehmood,et al.  Approximate discretization of regular descriptor (singular) systems with impulsive mode , 2016, Autom..

[52]  Nicholas P. Karampetakis,et al.  On the admissible initial conditions of a regular PMD , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[53]  Chong Tan,et al.  Observability of linear time-invariant descriptor systems with a derivative in the output , 2010 .

[54]  Athanasios A. Pantelous,et al.  Closed form solution for the equations of motion for constrained linear mechanical systems and generalizations: An algebraic approach , 2017, J. Frankl. Inst..

[55]  Athanasios A. Pantelous,et al.  A new approach for second‐order linear matrix descriptor differential equations of Apostol–Kolodner type , 2014 .

[56]  C. E. Langenhop,et al.  The Laurent expansion for a nearly singular matrix , 1971 .

[57]  Basil G. Mertzios,et al.  On the analysis of discrete linear time-invariant singular systems , 1990 .

[58]  Tobias Bruell Explicit solutions of regular linear discrete-time descriptor systems with constant coefficients , 2009 .