Model Reference Control Design by Prediction Error Identification

Abstract This paper studies a one-shot (non-iterative) data-based method for Model Reference (MR) control design. It shows that the optimal controller can be obtained as the solution of a Prediction Error (PE) identification problem that directly estimates the controller parameters through a reparametrization of the input-output model. The standard tools of PE Identification can thus be used to analyze the statistical properties (bias and variance) of the estimated controller. It also shows that, for MR control design, direct and indirect data-based methods are essentially equivalent.

[1]  Xavier Bombois,et al.  Identification and the Information Matrix: How to Get Just Sufficiently Rich? , 2009, IEEE Transactions on Automatic Control.

[2]  Diego Eckhard,et al.  Virtual Reference Feedback Tuning for non minimum phase plants , 2009, 2009 European Control Conference (ECC).

[3]  Sergio M. Savaresi,et al.  Virtual reference direct design method: an off-line approach to data-based control system design , 2000, IEEE Trans. Autom. Control..

[4]  Sergio M. Savaresi,et al.  Virtual reference feedback tuning (VRFT): a new direct approach to the design of feedback controllers , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[5]  Antonio Sala,et al.  Extensions to "virtual reference feedback tuning: A direct method for the design of feedback controllers" , 2005, Autom..

[6]  Svante Gunnarsson,et al.  Iterative feedback tuning: theory and applications , 1998 .

[7]  S. Gunnarsson,et al.  A convergent iterative restricted complexity control design scheme , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[8]  Sergio M. Savaresi,et al.  Virtual reference feedback tuning: a direct method for the design of feedback controllers , 2002, Autom..

[9]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[10]  Antonio Sala,et al.  VIRTUAL REFERENCE FEEDBACK TUNING IN RESTRICTED COMPLEXITY CONTROLLER DESIGN OF NON-MINIMUM PHASE SYSTEMS , 2005 .

[11]  A. Karimi,et al.  Non-iterative data-driven controller tuning using the correlation approach , 2007, 2007 European Control Conference (ECC).

[12]  A. Karimi,et al.  Iterative correlation‐based controller tuning , 2004 .

[13]  Torsten Söderström,et al.  On identification methods for direct data‐driven controller tuning , 2011 .