On the calculation of Fisher information for quantum parameter estimation based on the stochastic master equation

The Fisher information can be used to indicate the precision of parameter estimation by the quantum Cramer-Rao inequality. This paper presents an efficient numerical algorithm for the calculation of Fisher information based on quantum weak measurement. According to the quantum stochastic master equation, the Fisher information is expressed in the form of log-likelihood functions. Three main methods are employed in this algorithm: (i) we use the numerical differentiation approach to calculate the derivative of the log-likelihood function; (ii) we randomly generate a series of parameters of interest by the Metropolis Hastings (MH) algorithm; and (iii) the values of expectation can be approximated by the Markov chain Monte Carlo (MCMC) integration. Finally, as an example to testify the feasibility of the proposed algorithm, we consider the dissipation rates of the open quantum system as unknown parameters that need to be estimated. We show that the Fisher information can reach a precision close to the Heisenberg limit in the weak coupling condition. This again demonstrates the effectiveness of the new algorithm.

[1]  G. R. Jin,et al.  Quantum Fisher information of entangled coherent states in the presence of photon loss , 2013, 1307.7353.

[2]  Iain G Johnston,et al.  Efficient parametric inference for stochastic biological systems with measured variability , 2014, Statistical applications in genetics and molecular biology.

[3]  Augusto Smerzi,et al.  Quantum-enhanced multiparameter estimation in multiarm interferometers , 2015, Scientific Reports.

[4]  David J. Spiegelhalter,et al.  Introducing Markov chain Monte Carlo , 1995 .

[5]  Guang-Can Guo,et al.  Phase estimation with weak measurement using a white light source. , 2013, Physical review letters.

[6]  Bo Qi,et al.  Is measurement-based feedback still better for quantum control systems? , 2010, Syst. Control. Lett..

[7]  Franco Nori,et al.  Feedback control of Rabi oscillations in circuit QED , 2013 .

[8]  Vaidman,et al.  How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. , 1988, Physical review letters.

[9]  S. Lloyd,et al.  Quantum-Enhanced Measurements: Beating the Standard Quantum Limit , 2004, Science.

[10]  Animesh Datta,et al.  Precision metrology using weak measurements. , 2013, Physical review letters.

[11]  Nan Li,et al.  Entanglement detection via quantum Fisher information , 2013 .

[12]  Franco Nori,et al.  Fisher information under decoherence in Bloch representation , 2012, 1212.0917.

[13]  Francesco Petruccione,et al.  The Theory of Open Quantum Systems , 2002 .

[14]  Marco G. Genoni Cramér-Rao bound for time-continuous measurements in linear Gaussian quantum systems , 2017 .

[15]  V. Sandberg,et al.  ON THE MEASUREMENT OF A WEAK CLASSICAL FORCE COUPLED TO A QUANTUM MECHANICAL OSCILLATOR. I. ISSUES OF PRINCIPLE , 1980 .

[16]  K. Mølmer,et al.  Bayesian parameter inference from continuously monitored quantum systems , 2012, 1212.5700.

[17]  F. Nori,et al.  Atomic physics and quantum optics using superconducting circuits , 2013 .

[18]  Poul S. Jessen,et al.  Efficient quantum state estimation by continuous weak measurement and dynamical control , 2006 .

[19]  Alexandre Blais,et al.  Quantum trajectory approach to circuit QED: Quantum jumps and the Zeno effect , 2007, 0709.4264.

[20]  C. Caves Quantum Mechanical Noise in an Interferometer , 1981 .

[21]  S. Braunstein,et al.  Statistical distance and the geometry of quantum states. , 1994, Physical review letters.

[22]  Yalchin Efendiev,et al.  Modified Markov Chain Monte Carlo Method for Dynamic Data Integration Using Streamline Approach , 2008 .

[23]  C. Helstrom Quantum detection and estimation theory , 1969 .

[24]  R. Xu,et al.  Theory of open quantum systems , 2002 .

[25]  Francesco Albarelli,et al.  Enhanced estimation of loss in the presence of Kerr nonlinearity , 2016 .

[26]  Xiaoguang Wang,et al.  The energy-level crossing behavior and quantum Fisher information in a quantum well with spin-orbit coupling , 2015, Scientific Reports.

[27]  Erich L. Lehmann,et al.  Some Applications of the CramÉr-Rao Inequality , 2012 .

[28]  K. Jacobs Quantum Measurement Theory and its Applications , 2014 .

[29]  Wei Feng,et al.  Exact quantum Bayesian rule for qubit measurements in circuit QED , 2015, Scientific Reports.

[30]  Pieter Kok,et al.  General optimality of the Heisenberg limit for quantum metrology. , 2010, Physical review letters.

[31]  L. Ballentine,et al.  Probabilistic and Statistical Aspects of Quantum Theory , 1982 .