Extreme events in optics: Challenges of the MANUREVA project

Abstract. In this contribution we describe and discuss a series of challenges and questions relating to understanding extreme wave phenomena in optics. Many aspects of these questions are being studied in the framework of the MANUREVA project: a multidisciplinary consortium aiming to carry out mathematical, numerical and experimental studies in this field. The central motivation of this work is the 2007 results from optical physics [D. Solli et al., Nature 450, 1054 (2007)] that showed how a fibre-optical system can generate large amplitude extreme wave events with similar statistical properties to the infamous hydrodynamic rogue waves on the surface of the ocean. We review our recent work in this area, and discuss how this observation may open the possibility for an optical system to be used to directly study both the dynamics and statistics of extreme-value processes, a potential advance comparable to the introduction of optical systems to study chaos in the 1970s.

[1]  F. Hopf,et al.  Fluctuations in nonlinear swept-gain amplifiers , 1979 .

[2]  N. Akhmediev,et al.  Modulation instability and periodic solutions of the nonlinear Schrödinger equation , 1986 .

[3]  G. A. Fokin,et al.  Formation of a metastable state of a liquid phase in the application of nanosecond laser pulses to GaSb , 1988 .

[4]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[5]  H. Weber,et al.  Experimental observation of the self-stabilization of a synchronously pumped dye laser , 1990 .

[6]  Kung Yao,et al.  On Importance Sampling in Digital Communications - Part I: Fundamentals , 1993, IEEE J. Sel. Areas Commun..

[7]  C. Menyuk Non-Gaussian corrections to the Gordon-Haus distribution resulting from soliton interactions. , 1995, Optics letters.

[8]  T. Georges Study of the non-Gaussian timing jitter statistics induced by soliton interaction and filtering , 1996 .

[9]  F. Lederer,et al.  Evolution of randomly modulated solitons in optical fibers , 1996 .

[10]  Ronald L. Wasserstein,et al.  Monte Carlo: Concepts, Algorithms, and Applications , 1997 .

[11]  Mansoor Shafi,et al.  Quick Simulation: A Review of Importance Sampling Techniques in Communications Systems , 1997, IEEE J. Sel. Areas Commun..

[12]  P. Drummond,et al.  Phase Waves in Mode-Locked Superfluorescent Lasers , 1997 .

[13]  A. Stentz,et al.  Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm , 2000 .

[14]  A. Owen,et al.  Safe and Effective Importance Sampling , 2000 .

[15]  S. Turitsyn,et al.  Statistics of soliton-bearing systems with additive noise. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  S. Turitsyn,et al.  Statistics of interacting optical solitons. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  J. Dudley,et al.  Supercontinuum generation in photonic crystal fiber , 2006 .

[18]  D. Yevick,et al.  Multicanonical communication system modeling-application to PMD statistics , 2002, IEEE Photonics Technology Letters.

[19]  R. Windeler,et al.  Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber , 2003 .

[20]  Ronald Holzlöhner,et al.  Use of multicanonical Monte Carlo simulations to obtain accurate bit error rates in optical communications systems. , 2003, Optics letters.

[21]  S. Derevyanko,et al.  Non-Gaussian statistics of an optical soliton in the presence of amplified spontaneous emission. , 2003, Optics letters.

[22]  R. Windeler,et al.  Fundamental noise limitations to supercontinuum generation in microstructure fiber. , 2002, Physical review letters.

[23]  D. Yevick The accuracy of multicanonical system models , 2003, IEEE Photonics Technology Letters.

[24]  Ali S. Hadi,et al.  Extreme Value and Related Models with Applications in Engineering and Science , 2004 .

[25]  W. Kath,et al.  Importance sampling for polarization-mode dispersion: techniques and applications , 2004, Journal of Lightwave Technology.

[26]  P. Moral,et al.  Genealogical particle analysis of rare events , 2005, math/0602525.

[27]  A. Peleg,et al.  Strongly non-Gaussian statistics of optical soliton parameters due to collisions in the presence of delayed Raman response , 2005 .

[28]  J. Knight,et al.  Energy exchange between colliding solitons in photonic crystal fibers. , 2006, Optics express.

[29]  P. Russell,et al.  Photonic Crystal Fibers , 2003, Science.

[30]  P. Moral,et al.  Simulations of rare events in fiber optics by interacting particle systems , 2006 .

[31]  V. Zakharov,et al.  Freak waves as nonlinear stage of Stokes wave modulation instability , 2006 .

[32]  G. Agrawal Chapter 11 – Highly Nonlinear Fibers , 2006 .

[33]  O. Bang,et al.  Soliton collision and Raman gain regimes in continuous-wave pumped supercontinuum generation. , 2006, Optics express.

[34]  A. Picozzi Towards a nonequilibrium thermodynamic description of incoherent nonlinear optics. , 2007, Optics express.

[35]  B. Kibler,et al.  Thermalization of incoherent nonlinear waves , 2007 .

[36]  Gino Biondini,et al.  A Method to Compute Statistics of Large, Noise-Induced Perturbations of Nonlinear Schrödinger Solitons , 2007, SIAM Rev..

[37]  G. Millot,et al.  Self-similarity in ultrafast nonlinear optics , 2007 .

[38]  Intermittent dynamics, strong correlations, and bit-error-rate in multichannel optical fiber communication systems , 2006, physics/0606084.

[39]  B. Jalali,et al.  Optical rogue waves , 2007, Nature.

[40]  B. Eggleton,et al.  Modulation control and spectral shaping of optical fiber supercontinuum generation in the picosecond regime , 2008, 0809.2388.

[41]  B. Jalali,et al.  Active control of rogue waves for stimulated supercontinuum generation. , 2008, Physical review letters.

[42]  G. Millot,et al.  Optical rogue-wave-like extreme value fluctuations in fiber Raman amplifiers. , 2008, Optics express.

[43]  B. Jalali,et al.  Extreme value statistics in silicon photonics , 2009, LEOS 2008 - 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society.

[44]  B. Eggleton,et al.  Harnessing and control of optical rogue waves in supercontinuum generation. , 2008, Optics express.

[45]  E. Pelinovsky,et al.  Extreme ocean waves , 2008 .

[46]  J. Dudley,et al.  Rogue-wave-like characteristics in femtosecond supercontinuum generation. , 2009, Optics letters.

[47]  A. Mussot,et al.  Observation of extreme temporal events in CW-pumped supercontinuum. , 2009, Optics express.

[48]  M. Matsumoto All-optical signal regeneration using fiber nonlinearity , 2009 .

[49]  J. A. Crosse,et al.  Simulation of turbulence in mode-locked lasers , 2009 .

[50]  B. Eggleton,et al.  Direct detection of optical rogue wave energy statistics in supercontinuum generation , 2009 .

[51]  F. Arecchi,et al.  Non-Gaussian statistics and extreme waves in a nonlinear optical cavity. , 2009, Physical review letters.

[52]  G. Millot,et al.  Emergence of extreme events in fibre-based parametric processes driven by a partially incoherent pump wave , 2009, CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference.

[53]  L. Ostrovsky,et al.  Modulation instability: The beginning , 2009 .

[54]  T. Waseda,et al.  Freakish sea state and swell‐windsea coupling: Numerical study of the Suwa‐Maru incident , 2009 .

[55]  N. Akhmediev,et al.  Waves that appear from nowhere and disappear without a trace , 2009 .

[56]  J. Soto-Crespo,et al.  Rogue waves and rational solutions of the nonlinear Schrödinger equation. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[57]  J. Wolf,et al.  Optical rogue wave statistics in laser filamentation. , 2009, Optics express.

[58]  J. Dudley,et al.  Route to Coherent Supercontinuum Generation in the Long Pulse Regime , 2009, IEEE Journal of Quantum Electronics.

[59]  J. Soto-Crespo,et al.  Extreme waves that appear from nowhere: On the nature of rogue waves , 2009 .

[60]  J. Soto-Crespo,et al.  How to excite a rogue wave , 2009 .

[61]  F. Dias,et al.  Modulation instability, Akhmediev Breathers and continuous wave supercontinuum generation. , 2009, Optics express.

[62]  N. Akhmediev,et al.  Are rogue waves robust against perturbations , 2009 .

[63]  J. Taylor,et al.  Ten years of nonlinear optics in photonic crystal fibre , 2009 .

[64]  O. Bang,et al.  Collisions and turbulence in optical rogue wave formation , 2010 .

[65]  A. Mussot,et al.  Third-order dispersion for generating optical rogue solitons , 2010 .