Robust Visual Tracking for Multiple Targets

We address the problem of robust multi-target tracking within the application of hockey player tracking. The particle filter technique is adopted and modified to fit into the multi-target tracking framework. A rectification technique is employed to find the correspondence between the video frame coordinates and the standard hockey rink coordinates so that the system can compensate for camera motion and improve the dynamics of the players. A global nearest neighbor data association algorithm is introduced to assign boosting detections to the existing tracks for the proposal distribution in particle filters. The mean-shift algorithm is embedded into the particle filter framework to stabilize the trajectories of the targets for robust tracking during mutual occlusion. Experimental results show that our system is able to automatically and robustly track a variable number of targets and correctly maintain their identities regardless of background clutter, camera motion and frequent mutual occlusion between targets.

[1]  S. Godsill,et al.  Monte Carlo filtering for multi target tracking and data association , 2005, IEEE Transactions on Aerospace and Electronic Systems.

[2]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[3]  David G. Lowe,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004, International Journal of Computer Vision.

[4]  Neil Gordon,et al.  Bayesian methods for tracking , 1993 .

[5]  Isaac Cohen,et al.  Soccer Player Tracking across Uncalibrated Camera Streams , 2004 .

[6]  Hugh F. Durrant-Whyte,et al.  An Experimental and Theoretical Investigation into Simultaneous Localisation and Map Building , 1999, ISER.

[7]  Tomaso A. Poggio,et al.  A general framework for object detection , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[8]  B. Anderson,et al.  Optimal Filtering , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[9]  Alonzo Kelly,et al.  A 3D State Space Formulation of a Navigation Kalman Filter for Autonomous Vehicles , 1994 .

[10]  Narendra Ahuja,et al.  Detecting Faces in Images: A Survey , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Dieter Fox,et al.  Knowledge Compilation Properties of Trees-of-BDDs, Revisited , 2009, IJCAI.

[12]  Nando de Freitas,et al.  The Unscented Particle Filter , 2000, NIPS.

[13]  Dorin Comaniciu,et al.  Kernel-Based Object Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Tieniu Tan,et al.  Real time hand tracking by combining particle filtering and mean shift , 2004, Sixth IEEE International Conference on Automatic Face and Gesture Recognition, 2004. Proceedings..

[15]  Thomas S. Huang,et al.  Parametric contour tracking using unscented Kalman filter , 2002, Proceedings. International Conference on Image Processing.

[16]  Takeo Kanade,et al.  Neural Network-Based Face Detection , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Michael Isard,et al.  Bayesian Object Localisation in Images , 2001, International Journal of Computer Vision.

[18]  Paul A. Viola,et al.  Detecting Pedestrians Using Patterns of Motion and Appearance , 2005, International Journal of Computer Vision.

[19]  Gary R. Bradski,et al.  Real time face and object tracking as a component of a perceptual user interface , 1998, Proceedings Fourth IEEE Workshop on Applications of Computer Vision. WACV'98 (Cat. No.98EX201).

[20]  James J. Little,et al.  A Boosted Particle Filter: Multitarget Detection and Tracking , 2004, ECCV.

[21]  Ramakant Nevatia,et al.  Tracking multiple humans in complex situations , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  Michael Isard,et al.  BraMBLe: a Bayesian multiple-blob tracker , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[23]  Hugh F. Durrant-Whyte,et al.  A solution to the simultaneous localization and map building (SLAM) problem , 2001, IEEE Trans. Robotics Autom..

[24]  Paul A. Viola,et al.  Robust Real-Time Face Detection , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[25]  Donald Reid An algorithm for tracking multiple targets , 1978 .

[26]  Ingemar J. Cox,et al.  An Efficient Implementation of Reid's Multiple Hypothesis Tracking Algorithm and Its Evaluation for the Purpose of Visual Tracking , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  David A. Forsyth,et al.  Finding and tracking people from the bottom up , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[28]  Ying Wu,et al.  A co-inference approach to robust visual tracking , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[29]  Neil J. Gordon,et al.  Editors: Sequential Monte Carlo Methods in Practice , 2001 .

[30]  Wolfram Burgard,et al.  Tracking multiple moving targets with a mobile robot using particle filters and statistical data association , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[31]  P. Pérez,et al.  Tracking multiple objects with particle filtering , 2002 .

[32]  Jinman Kang,et al.  Tracking objects from multiple and moving cameras , 2004 .

[33]  Jitendra Malik,et al.  Recognizing action at a distance , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[34]  Robert T. Collins,et al.  Mean-shift blob tracking through scale space , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[35]  Jouko Lampinen,et al.  Rao-Blackwellized Monte Carlo Data Association for Multiple Target Tracking , 2004 .

[36]  T. B. Boffey Linear Network Optimization: Algorithms and Codes , 1994 .

[37]  Michael Isard,et al.  Learning and Classification of Complex Dynamics , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[38]  Nando de Freitas,et al.  Rao-Blackwellised Particle Filtering for Dynamic Bayesian Networks , 2000, UAI.

[39]  Matthew A. Brown,et al.  Recognising panoramas , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[40]  Gang Hua,et al.  Tracking appearances with occlusions , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[41]  Xiaojing Wu Template-based action recognition : classifying hockey players’ movement , 2005 .

[42]  James J. Little,et al.  AUTOMATIC RECTIFICATION OF LONG IMAGE SEQUENCES , 2003 .

[43]  Peter H. Tu,et al.  Simultaneous estimation of segmentation and shape , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[44]  Peter C. Cheeseman,et al.  Estimating uncertain spatial relationships in robotics , 1986, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[45]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[46]  Andrew Zisserman,et al.  Multiple view geometry in computer visiond , 2001 .

[47]  C Tomasi,et al.  Shape and motion from image streams: a factorization method. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[48]  T. Kailath The Divergence and Bhattacharyya Distance Measures in Signal Selection , 1967 .

[49]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[50]  Michael Isard,et al.  CONDENSATION—Conditional Density Propagation for Visual Tracking , 1998, International Journal of Computer Vision.

[51]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[52]  Dorin Comaniciu,et al.  Real-time tracking of non-rigid objects using mean shift , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[53]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[54]  Patrick Pérez,et al.  Maintaining multimodality through mixture tracking , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[55]  Y. Bar-Shalom Tracking and data association , 1988 .

[56]  Patrick Pérez,et al.  Data fusion for visual tracking with particles , 2004, Proceedings of the IEEE.

[57]  Robert J. Woodham,et al.  Analysis of player actions in selected hockey game situations , 2005, The 2nd Canadian Conference on Computer and Robot Vision (CRV'05).

[58]  Andrew Blake,et al.  A Probabilistic Exclusion Principle for Tracking Multiple Objects , 2000, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[59]  Cordelia Schmid,et al.  Human Detection Based on a Probabilistic Assembly of Robust Part Detectors , 2004, ECCV.

[60]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[61]  Patrick Pérez,et al.  Color-Based Probabilistic Tracking , 2002, ECCV.

[62]  Yizong Cheng,et al.  Mean Shift, Mode Seeking, and Clustering , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[63]  Isaac Cohen,et al.  TRACKING OBJECTS FROM MULTIPLE STATIONARY AND MOVING CAMERAS , 2004 .