Two Ways for the Automatic Generation of Application Ontologies by Using BalkaNet

This article presents two methods for the automatic generation of application ontologies from the multilingual BalkaNet WordNets Web ontology language (OWL) representation. Both proposed methods are applied on the BalkaNet WordNets ontology for the Serbian language (SerWN). The first one uses only the SerWN, both for generating class hierarchy and instances of classes, while the other method combines the SerWN with a domain ontology. The first method was used to automatically generate the FoodOntology, whereas the second method to generate the ontology of rhetorical figures tropes. Preliminary evaluation results corroborate the soundness of the approach. Since BN consists of individual WNs for five Balkan languages and Czech, the methodology presented in this article can also be used for all these languages. The first method can also be used for other domains.

[1]  M. Krishnamurthy,et al.  Ontology Supported Information Systems: A Review , 2014 .

[2]  Naveen K. Chilamkurti,et al.  An ontology-driven personalized food recommendation in IoT-based healthcare system , 2018, The Journal of Supercomputing.

[3]  Andrea Esuli,et al.  SENTIWORDNET: A Publicly Available Lexical Resource for Opinion Mining , 2006, LREC.

[4]  Irene Pimenta Rodrigues,et al.  Work Out the Semantic Web Search: The Cooperative Way , 2012, Adv. Artif. Intell..

[5]  Abdelmajid Ben Hamadou,et al.  Ontology-based approach for measuring semantic similarity , 2014, Eng. Appl. Artif. Intell..

[6]  C. Snae,et al.  FOODS: A Food-Oriented Ontology-Driven System , 2008, 2008 2nd IEEE International Conference on Digital Ecosystems and Technologies.

[7]  Andrea Ko,et al.  Incremental Ontology Population and Enrichment through Semantic-based Text Mining: An Application for IT Audit Domain , 2015, Int. J. Semantic Web Inf. Syst..

[8]  Agnieszka Konys,et al.  Knowledge systematization for ontology learning methods , 2018, KES.

[9]  Verginica Barbu Mititelu,et al.  The Romanian wordnet in a nutshell , 2013, Lang. Resour. Evaluation.

[10]  Emanuele Pianta,et al.  Revising the Wordnet Domains Hierarchy: semantics, coverage and balancing , 2004 .

[11]  Piek Vossen,et al.  EuroWordNet: A multilingual database with lexical semantic networks , 1998, Springer Netherlands.

[12]  Niladri Chatterjee,et al.  Automatic relationship extraction from agricultural text for ontology construction , 2017 .

[13]  Jelena Mitrovic,et al.  Ontology of Rhetorical Figures for Serbian , 2013, TSD.

[14]  Qiang Zhou,et al.  A semantic approach for text clustering using WordNet and lexical chains , 2015, Expert Syst. Appl..

[15]  صبحي العادلــــي أثر استخدام الدعائم التعليمية في تنمية مهارات حل المشكلات لدى طالبات الصف التاسع الأساسي في مادة العلوم , 2008 .

[16]  Paul Buitelaar,et al.  Ontology Learning from Text: An Overview , 2005 .

[17]  Christiane Fellbaum,et al.  Publishing and Linking WordNet using lemon and RDF , 2014 .

[18]  Stasa Vujicic Stankovic,et al.  Enriching SerbianWordNet and Electronic Dictionaries with Terms from the Culinary Domain , 2014, GWC.

[19]  Chun-Hung Chen,et al.  Building a Database of Related Concepts of Mandarin Metaphors Based on WordNet and SUMO , 2009, 2009 IEEE International Conference on Semantic Computing.

[20]  Waqar Mahmood,et al.  A survey of ontology learning techniques and applications , 2018, Database J. Biol. Databases Curation.