Locking-free adaptive discontinuous Galerkin FEM for linear elasticity problems

An adaptive discontinuous Galerkin finite element method for linear elasticity problems is presented. We develop an a posteriori error estimate and prove its robustness with respect to nearly incompressible materials (absence of volume locking). Furthermore, we present some numerical experiments which illustrate the performance of the scheme on adaptively refined meshes.

[1]  Ilaria Perugia,et al.  An hp-Analysis of the Local Discontinuous Galerkin Method for Diffusion Problems , 2002, J. Sci. Comput..

[2]  Peter Hansbo,et al.  Energy norm a posteriori error estimation for discontinuous Galerkin methods , 2003 .

[3]  Carsten Carstensen,et al.  Averaging technique for a posteriori error control in elasticity. Part III: Locking-free nonconforming FEM , 2001 .

[4]  I. Babuska,et al.  On locking and robustness in the finite element method , 1992 .

[5]  J. Douglas,et al.  Interior Penalty Procedures for Elliptic and Parabolic Galerkin Methods , 1976 .

[6]  R. Kouhia,et al.  A linear nonconforming finite element method for nearly incompressible elasticity and stokes flow , 1995 .

[7]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[8]  D. Schötzau,et al.  Energy norm a posteriori error estimation for mixed discontinuous Galerkin approximations of the Stokes problem , 2003 .

[9]  M. Vogelius An analysis of thep-version of the finite element method for nearly incompressible materials , 1983 .

[10]  Rüdiger Verführt,et al.  A review of a posteriori error estimation and adaptive mesh-refinement techniques , 1996, Advances in numerical mathematics.

[11]  S. C. Brenner,et al.  Linear finite element methods for planar linear elasticity , 1992 .

[12]  Ilaria Perugia,et al.  Energy norm a posteriori error estimation for mixed discontinuous Galerkin approximations of the Maxwell operator , 2005 .

[13]  P. Hansbo,et al.  CHALMERS FINITE ELEMENT CENTER Preprint 2000-06 Discontinuous Galerkin Methods for Incompressible and Nearly Incompressible Elasticity by Nitsche ’ s Method , 2007 .

[14]  D. Schötzau,et al.  An hp-adaptive mixed discontinuous Galerkin FEM for nearly incompressible linear elasticity , 2006 .

[15]  Ilaria Perugia,et al.  Mixed discontinuous Galerkin approximation of the Maxwell operator: The indefinite case , 2005 .

[16]  Ilaria Perugia,et al.  Mixed Discontinuous Galerkin Approximation of the Maxwell Operator: Non-Stabilized Formulation , 2005, J. Sci. Comput..

[17]  Mary F. Wheeler,et al.  A Posteriori error estimates for a discontinuous galerkin method applied to elliptic problems. Log number: R74 , 2003 .

[18]  Ohannes A. Karakashian,et al.  A Posteriori Error Estimates for a Discontinuous Galerkin Approximation of Second-Order Elliptic Problems , 2003, SIAM J. Numer. Anal..

[19]  M. Wheeler An Elliptic Collocation-Finite Element Method with Interior Penalties , 1978 .

[20]  Michael Vogelius,et al.  A right-inverse for the divergence operator in spaces of piecewise polynomials , 1983 .

[21]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[22]  Dominique Chapelle,et al.  Locking-free mixed stabilized finite element methods for bending-dominated shells , 1999 .

[23]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[24]  Thomas P. Wihler,et al.  Locking-free DGFEM for elasticity problems in polygons , 2002 .

[25]  Andrea Toselli,et al.  Mixed hp-DGFEM for Incompressible Flows , 2002, SIAM J. Numer. Anal..

[26]  Susanne C. Brenner,et al.  Korn's inequalities for piecewise H1 vector fields , 2003, Math. Comput..

[27]  G. A. Baker Finite element methods for elliptic equations using nonconforming elements , 1977 .

[28]  Paul Houston,et al.  Energy Norm shape A Posteriori Error Estimation for Mixed Discontinuous Galerkin Approximations of the Stokes Problem , 2005, J. Sci. Comput..