Terrestrial foreshock Langmuir waves: STEREO observations, theoretical modeling, and quasi‐linear simulations

[1] Langmuir waves in the terrestrial electron foreshock are investigated using observations from the STEREO spacecraft, theoretical modeling, and quasi-linear simulations. Emphases are placed on spatial variations of Langmuir field strength with distance between the spacecraft and the tangent point and on the effects of ambient density fluctuations on these variations. The STEREO mission provides new observations of foreshock Langmuir waves at distances more than twice as far from Earth as previously observed. Based on established geometric properties of the foreshock region, two methods are developed for separating Langmuir waves of foreshock origin from those of solar and/or heliospheric origins. The observed maximum foreshock Langmuir field strength falls with distance via a power law with an exponent −1.01 ± 0.12. The theory and simulations predict field strengths and power law spatial variations in field strengths that are consistent with the observations when scattering of Langmuir waves by density fluctuations is included. The power law exponents predicted by both theory and simulations fall within the uncertainty of the observations for the typical solar wind conditions observed but differ by a factor of ≈1.5 from simulations that assume density homogeneity. This indicates that density fluctuations play an important role in the beam-Langmuir wave dynamics in the foreshock.

[1]  B. Tsurutani,et al.  Magnetic decrease formation from <1 AU to ∼5 AU: Corotating interaction region reverse shocks , 2009 .

[2]  P. Robinson,et al.  Numerical simulation of electron distributions upstream and downstream of high Mach number quasi-perpendicular collisionless shocks , 2008 .

[3]  P. Robinson,et al.  Eigenmode structure in solar-wind Langmuir waves. , 2008, Physical review letters.

[4]  P. Robinson,et al.  Simulations of coronal type III solar radio bursts: 1. Simulation model , 2008 .

[5]  P. Robinson,et al.  Simulations of coronal type III solar radio bursts: 2. Dynamic spectrum for typical parameters , 2008 .

[6]  J. McCauley,et al.  The Electric Antennas for the STEREO/WAVES Experiment , 2008 .

[7]  E. Christian,et al.  The STEREO Mission: An Introduction , 2008 .

[8]  J. Luhmann,et al.  The STEREO IMPACT Suprathermal Electron (STE) Instrument , 2008 .

[9]  C. A. Meetre,et al.  S/WAVES: The Radio and Plasma Wave Investigation on the STEREO Mission , 2008 .

[10]  M. Maksimović,et al.  STEREO observations of electron beams and Langmuir waves in the terrestrial electron foreshock , 2007 .

[11]  J. Souček,et al.  Beam‐plasma interaction in randomly inhomogeneous plasmas and statistical properties of small‐amplitude Langmuir waves in the solar wind and electron foreshock , 2007 .

[12]  P. Robinson,et al.  Quasilinear calculation of Langmuir wave generation and beam propagation in the presence of density fluctuations , 2006 .

[13]  P. Robinson,et al.  Numerical simulations of type-III solar radio bursts. , 2006, Physical review letters.

[14]  Z. Kuncic,et al.  Planetary foreshock radio emissions , 2005 .

[15]  P. Robinson,et al.  Second harmonic electromagnetic emission via beam-driven Langmuir waves , 2004 .

[16]  A. Balogh,et al.  The dependence of Langmuir wave amplitudes on position in Earth's foreshock , 2004 .

[17]  S. Knock,et al.  A Quantitative model for terrestrial foreshock radio emissions: 1. Predicted properties , 2004 .

[18]  P. Kellogg Langmuir waves associated with collisionless shocks; a review , 2003 .

[19]  P. Robinson,et al.  New constraints and energy conversion efficiencies for plasma emission , 2003 .

[20]  P. Robinson,et al.  Dynamics of beam-driven Langmuir and ion-acoustic waves including electrostatic decay , 2003 .

[21]  S. Knock,et al.  Analytic model for the electrostatic potential jump across collisionless shocks, with application to Earth's bow shock , 2002 .

[22]  P. Robinson,et al.  Multiple electron beam propagation and Langmuir wave generation in plasmas , 2002 .

[23]  S. Knock,et al.  A quantitative theory for terrestrial foreshock radio emissions , 2002 .

[24]  I. Cairns Role of collective effects in dominance of scattering off thermal ions over Langmuir wave decay: Analysis, simulations, and space applications , 2000 .

[25]  P. Robinson,et al.  Bidirectional Type III Solar Radio Bursts , 2000 .

[26]  H. Matsumoto,et al.  Statistical studies of plasma waves and backstreaming electrons in the terrestrial electron foreshock observed by Geotail , 2000 .

[27]  Eos Sorce,et al.  Laboratory for Atmospheric and Space Physics , 2000 .

[28]  P. Robinson,et al.  Strong Evidence for Stochastic Growth of Langmuir-Like Waves in Earth's Foreshock , 1999 .

[29]  C. Russell,et al.  Electron temperature in the ambient solar wind: Typical properties and a lower bound at 1 AU , 1998 .

[30]  P. Robinson,et al.  Foreshock Langmuir waves for unusually constant solar wind conditions : Data and implications for foreshock structure , 1997 .

[31]  S. Bale,et al.  On the amplitude of intense Langmuir waves in the terrestrial electron foreshock , 1997 .

[32]  P. Riley,et al.  Ulysses electron distributions fitted with Kappa functions , 1997 .

[33]  P. Robinson,et al.  First test of stochastic growth theory for Langmuir waves in Earth's foreshock , 1997 .

[34]  Rudolf A. Treumann,et al.  Advanced space plasma physics , 1997 .

[35]  A. Klimas,et al.  Wind observations of the electron foreshock , 1996 .

[36]  P. Veltri,et al.  Spreading and intermittent structure of the upstream boundary of planetary magnetic foreshocks , 1996 .

[37]  F. Coroniti,et al.  Spatial distribution of electron plasma oscillations in the Earth`s foreshock at ISEE 3 , 1995 .

[38]  J. Lyon,et al.  MHD simulations of Earth's bow shock at low Mach numbers: Standoff distances , 1995 .

[39]  P. Robinson Stochastic wave growth , 1995 .

[40]  C. Perche,et al.  WAVES: The radio and plasma wave investigation on the wind spacecraft , 1995 .

[41]  R. Strangeway,et al.  Comparison of upstream phenomena at Venus and Earth , 1995 .

[42]  P. Robinson,et al.  Dynamics of Langmuir and Ion-Sound Waves in Type III Solar Radio Sources , 1993 .

[43]  P. Robinson Clumpy Langmuir waves in type III radio sources , 1992 .

[44]  A. Klimas,et al.  Three‐dimensional analytical model for the spatial variation of the foreshock electron distribution function: Systematics and comparisons with ISEE observations , 1990 .

[45]  L. Erukhimov,et al.  Interplanetary plasma irregularities and ion acoustic turbulence , 1990 .

[46]  I. Cairns The electron distribution function upstream from the Earth's bow shock , 1987 .

[47]  I. Cairns A theory for the Langmuir waves in the electron foreshock , 1987 .

[48]  D. Gurnett,et al.  Evidence for nonlinear wave-wave interactions in solar type III radio bursts , 1986 .

[49]  D. Melrose,et al.  Clumpy Langmuir waves in type III solar radio bursts , 1986 .

[50]  M. Goldman,et al.  Quenching of the beam-plasma instability by large-scale density fluctuations in 3 dimensions , 1985 .

[51]  C. Wu A fast Fermi process: Energetic electrons accelerated by a nearly perpendicular bow shock , 1984 .

[52]  L. Celnikier,et al.  A determination of the electron density fluctuation spectrum in the solar wind, using the ISEE propagation experiment , 1983 .

[53]  D. Gurnett,et al.  Energetic electrons and plasma waves associated with a solar type III radio burst , 1981 .

[54]  K. Anderson Measurements of bow shock particles far upstream from the Earth , 1981 .

[55]  G. Parks,et al.  Thin sheets of energetic electrons upstream from the earth's bow shock , 1979 .

[56]  P. Kellogg,et al.  Electrostatic noise at the plasma frequency beyond the earth's bow shock , 1979 .

[57]  D. Ryutov,et al.  Relaxation of Relativistic Electron Beam in a Plasma with Random Density Inhomogeneities , 1976 .

[58]  E. Greenstadt Phenomenology of the Earth’s Bow Shock System. A Summary Description of Experimental Results , 1976 .

[59]  F. Scarf,et al.  Nonthermal electrons and high-frequency waves in the upstream solar wind, 1. Observations , 1971 .