Experimental Investigation of Energy-Efficient Digital Circuits Based on eSFQ Logic

We present the design and results of experimental verification methods for ultra-low-power digital circuits based on the recently introduced energy-efficient single flux quantum (eSFQ) logic. Similar to another low-power SFQ logic, ERSFQ, eSFQ circuits make use of superconducting dc bias current dividers and thus avoid static power dissipation. As a result, per-gate power dissipation is reduced by two orders of magnitude as compared to conventional rapid single flux quantum and static power dissipation is zero. The eSFQ circuits are fabricated using the HYPRES standard 4.5 kA/cm2 process. We integrate a low-pass analog-to-digital modulator with our eSFQ deserializer to enable testing at high speed. In this paper, we demonstrate the viability and performance metrics of eSFQ circuits through functional and high-speed tests. Specifically, we confirmed correct operation and present measured parameter margins.

[1]  O A Mukhanov,et al.  Energy-Efficient Single Flux Quantum Technology , 2011, IEEE Transactions on Applied Superconductivity.

[2]  S. Sarwana,et al.  Characterization of HYPRES' 4.5 kA/cm/sup 2/ & 8 kA/cm/sup 2/ Nb/AlO/sub x//Nb fabrication processes , 2005, IEEE Transactions on Applied Superconductivity.

[3]  S. Sarwana,et al.  Zero Static Power Dissipation Biasing of RSFQ Circuits , 2011, IEEE Transactions on Applied Superconductivity.

[4]  Anna Y. Herr,et al.  Ultra-low-power superconductor logic , 2011, 1103.4269.

[5]  Y. Yamanashi,et al.  Study of LR-Loading Technique for Low-Power Single Flux Quantum Circuits , 2007, IEEE Transactions on Applied Superconductivity.

[6]  Anubhav Sahu,et al.  Implementation of energy efficient single flux quantum digital circuits with sub-aJ/bit operation , 2012, 1209.6383.

[7]  S. Rylov,et al.  Superconducting Switching Amplifiers for High Speed Digital Data Links , 2009, IEEE Transactions on Applied Superconductivity.

[8]  V. Semenov,et al.  RSFQ logic/memory family: a new Josephson-junction technology for sub-terahertz-clock-frequency digital systems , 1991, IEEE Transactions on Applied Superconductivity.

[9]  Konstantin K. Likharev,et al.  Experimental realization of a resistive single flux quantum logic circuit , 1987 .

[10]  Wei Chen,et al.  Retargeting RSFQ cells to a submicron fabrication process , 2001 .

[11]  T. V. Filippov,et al.  High-resolution ADC operation up to 19.6 GHz clock frequency , 2001 .

[12]  I.V. Vernik,et al.  Superconducting High-Resolution Low-Pass Analog-to-Digital Converters , 2007, IEEE Transactions on Applied Superconductivity.

[13]  O. Mukhanov,et al.  Rapid single flux quantum (RSFQ) shift register family , 1993, IEEE Transactions on Applied Superconductivity.

[14]  J. Kunert,et al.  Reduced Power Consumption in Superconducting Electronics , 2011, IEEE Transactions on Applied Superconductivity.

[15]  Vladimir Dotsenko,et al.  Invited Paper Special Section on Recent Progress in Superconductive Digital Electronics Superconductor Digital-rf Receiver Systems , 2022 .

[16]  S.V. Rylov,et al.  Superconducting high-resolution A/D converter based on phase modulation and multichannel timing arbitration , 1995, IEEE Transactions on Applied Superconductivity.

[17]  S. B. Kaplan,et al.  Operation of a superconductive demultiplexer using rapid single flux quantum (RSFQ) technology , 1995, IEEE Transactions on Applied Superconductivity.

[18]  O. Mukhanov,et al.  High resolution ADC system , 1997, IEEE Transactions on Applied Superconductivity.

[19]  Yuki Yamanashi,et al.  Bit-Serial Single Flux Quantum Microprocessor CORE , 2008, IEICE Trans. Electron..

[20]  Vasili K. Semenov,et al.  Characterization of HYPRES' 4.5 & 8 Fabrication Processes , 2005 .

[21]  T. V. Filippov,et al.  20 GHz operation of an asynchronous wave-pipelined RSFQ arithmetic-logic unit , 2012 .

[22]  O A Mukhanov,et al.  Hybrid Semiconductor-Superconductor Fast-Readout Memory for Digital RF Receivers , 2011, IEEE Transactions on Applied Superconductivity.

[23]  Andrew A. Chien,et al.  The future of microprocessors , 2011, Commun. ACM.

[24]  Jie Ren,et al.  Progress With Physically and Logically Reversible Superconducting Digital Circuits , 2011, IEEE Transactions on Applied Superconductivity.

[25]  O. Mielke,et al.  Improved operation range of digital superconductive electronics by implementing passive phaseshifters , 2010 .

[26]  Konstantin K. Likharev,et al.  Resistive Single Flux Quantum Logic for the Josephson- Junction Digital Technology , 2011 .

[27]  D.Y. Zinoviev,et al.  New RSFQ circuits (Josephson junction digital devices) , 1993, IEEE Transactions on Applied Superconductivity.

[28]  Alex F. Kirichenko,et al.  Multi-channel time digitizing systems , 2003 .

[29]  Oleg A. Mukhanov,et al.  Superconductor analog-to-digital converters , 2004, Proceedings of the IEEE.

[30]  H. Meyer,et al.  Comparison of RSFQ Logic Cells With and Without Phase Shifting Elements by Means of BER Measurements , 2011, IEEE Transactions on Applied Superconductivity.

[31]  Masato Ito,et al.  18-GHz, 4.0-aJ/bit Operation of Ultra-Low-Energy Rapid Single-Flux-Quantum Shift Registers , 2012 .