Bioinspired Nanochannel-assisted Broadband Absorber for Solar Energy Harvesting

[1]  Z. Liu,et al.  Perfect Solar Absorber with Extremely Low Infrared Emissivity , 2022, Photonics.

[2]  Z. Dong,et al.  Three-Dimensional Open Water Microchannel Transpiration Mimetics. , 2022, ACS applied materials & interfaces.

[3]  Z. Liu,et al.  Nearly perfect absorption of solar energy by coherent of electric and magnetic polaritons , 2022, Solar Energy Materials and Solar Cells.

[4]  Hui Kong,et al.  3D‐Printed Bionic Solar Evaporator , 2022, Solar RRL.

[5]  D. He,et al.  Near-perfect broadband metamaterial absorbers of truncated nanocones using colloidal lithography , 2021 .

[6]  M. Brestič,et al.  Photosynthesis research under climate change , 2021, Photosynthesis Research.

[7]  Hongsheng Chen,et al.  A perspective on the next generation of invisibility cloaks—Intelligent cloaks , 2021 .

[8]  Jensen Li,et al.  Ultra-broadband reflectionless Brewster absorber protected by reciprocity , 2021, Light, science & applications.

[9]  Zhaolong Wang,et al.  Perfect spectrally selective solar absorber with dielectric filled fishnet tungsten grating for solar energy harvesting , 2020 .

[10]  Junming Zhao,et al.  Complex refractive indices measurements of polymers in infrared bands , 2020 .

[11]  H. Duan,et al.  Reliable Patterning, Transfer Printing and Post‐Assembly of Multiscale Adhesion‐Free Metallic Structures for Nanogap Device Applications , 2020, Advanced Functional Materials.

[12]  P. Cheng,et al.  An experimental study of a nearly perfect absorber made from a natural hyperbolic material for harvesting solar energy , 2020 .

[13]  Jiayang Wu,et al.  Bound states in the continuum in anisotropic plasmonic metasurfaces. , 2020, Nano letters.

[14]  S. Griffiths,et al.  Culture and low-carbon energy transitions , 2020, Nature Sustainability.

[15]  V. Wood,et al.  Compact Mid-Infrared Gas Sensing Enabled by an All-Metamaterial Design. , 2020, Nano letters.

[16]  H. Hasan,et al.  Electrodialysis desalination for water and wastewater: A review , 2020, Chemical Engineering Journal.

[17]  Hong Zhou,et al.  Terahertz biosensing based on bi-layer metamaterial absorbers toward ultra-high sensitivity and simple fabrication , 2019, Applied Physics Letters.

[18]  P. Cheng,et al.  Enhancements of absorption and photothermal conversion of solar energy enabled by surface plasmon resonances in nanoparticles and metamaterials , 2019, International Journal of Heat and Mass Transfer.

[19]  Zhibo Ma,et al.  Fundamentals of TiO2 Photocatalysis: Concepts, Mechanisms, and Challenges , 2019, Advanced materials.

[20]  G. Owens,et al.  Photothermal materials: A key platform enabling highly efficient water evaporation driven by solar energy , 2019, Materials Today Energy.

[21]  N. Hilal,et al.  Reverse osmosis desalination: A state-of-the-art review , 2019, Desalination.

[22]  J. J. Sadhwani,et al.  Primary energy consumption in desalination: The case of Gran Canaria , 2019, Desalination.

[23]  Quan Li,et al.  Dual Toroidal Dipole Resonance Metamaterials under a Terahertz Domain , 2018, Materials.

[24]  P. Cheng,et al.  Natural anisotropic nanoparticles with a broad absorption spectrum for solar energy harvesting , 2018, International Communications in Heat and Mass Transfer.

[25]  Bo Han Chen,et al.  A broadband achromatic metalens in the visible , 2018, Nature Nanotechnology.

[26]  Viktoriia E. Babicheva,et al.  Electric quadrupole and magnetic dipole coupling in plasmonic nanoparticle arrays. , 2018, 1802.07960.

[27]  Dong Liu,et al.  Sub-nanometer planar solar absorber , 2017 .

[28]  A. Polman,et al.  Photovoltaic materials: Present efficiencies and future challenges , 2016, Science.

[29]  Bin Zhu,et al.  Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation , 2016, Science Advances.

[30]  P. Cheng,et al.  Plasma resonance effects on bubble nucleation in flow boiling of a nanofluid irradiated by a pulsed laser beam , 2016 .

[31]  Charles J Vörösmarty,et al.  Freshwater ecosystem services supporting humans: Pivoting from water crisis to water solutions , 2015 .

[32]  Enrico Drioli,et al.  Membrane distillation: Recent developments and perspectives , 2015 .

[33]  K. Kern,et al.  Tetradymites as Natural Hyperbolic Materials for the Near-Infrared to Visible , 2014 .

[34]  Marc Abou Anoma,et al.  Passive radiative cooling below ambient air temperature under direct sunlight , 2014, Nature.

[35]  D. P. Tsai,et al.  Resonant Transparency and Non-Trivial Non-Radiating Excitations in Toroidal Metamaterials , 2013, Scientific Reports.

[36]  Koray Aydin,et al.  Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. , 2011, Nature communications.

[37]  E. Dlugokencky,et al.  Non-CO2 greenhouse gases and climate change , 2011, Nature.

[38]  P. Sheng,et al.  Transformation optics and metamaterials. , 2010, Nature materials.

[39]  Harald Giessen,et al.  Magnetoinductive and Electroinductive Coupling in Plasmonic Metamaterial Molecules , 2008 .

[40]  Abdeen Mustafa Omer,et al.  Focus on low carbon technologies: The positive solution , 2008 .

[41]  Z. Liu,et al.  Ultrahigh broadband absorption in metamaterials with electric and magnetic polaritons enabled by multiple materials , 2022, International Journal of Heat and Mass Transfer.

[42]  Zhaolong Wang,et al.  Optimization of the perfect absorber for solar energy harvesting based on the cone-like nanostructures , 2021 .

[43]  P. Cheng,et al.  A numerical study on effects of surrounding medium, material, and geometry of nanoparticles on solar absorption efficiencies , 2018 .

[44]  Zhuomin M. Zhang,et al.  Optical absorption of carbon-gold core-shell nanoparticles , 2018 .

[45]  P. Cheng,et al.  A perfect absorber design using a natural hyperbolic material for harvesting solar energy , 2018 .